Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 803-811    DOI: 10.11902/1005.4537.2024.201
Current Issue | Archive | Adv Search |
Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution
DU Jin1(), HU Linlan1, SUN Jian1, SONG Qinghua1, CHEN Meng1, XIAO Jinkun2
1.School of Mechanical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
2.School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
Cite this article: 

DU Jin, HU Linlan, SUN Jian, SONG Qinghua, CHEN Meng, XIAO Jinkun. Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 803-811.

Download:  HTML  PDF(16152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tribo-corrosion performance of 7075-T6 Al-alloy in 3.5% (mass fraction) NaCl solution was studied, while the variation of the passivation film and the tribo-corroded surface was also examined versus the tribo-corrosion process. The results demonstrate that sliding friction leads to a decrease in the open-circuit potential (OCP) and the potentiodynamic polarization corrosion potential of Al-alloy, whereas, a significant increase in the corrosion current density. In constant cathodic potential condition, the passivation film was removed due to the friction, accelerating the hydrogen evolution reaction. In constant anodic potential condition, friction leads to a significant increase in corrosion current density, accelerating the corrosion of the alloy. XPS analysis result indicates that the primary constituent of the passivation film is Al2O3. In conditions of dry sliding friction, OCP, constant anodic potential, and constant cathodic potential, respectively, the values of friction coefficient and wear rate can be ranked as the following decline order: dry sliding friction>constant anodic potential> OCP>constant cathodic potential. The wear mechanism in dry sliding friction condition is adhesive wear, the wear mechanisms in OCP and constant cathodic potential conditions are abrasive wear, and the wear mechanism in constant anodic potential condition is corrosive wear.

Key words:  7075-T6 Al-alloy      corrosion      tribo-corrosion      wear mechanism     
Received:  05 July 2024      32134.14.1005.4537.2024.201
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52374372);Yangzhou Science and Technology Plan Project(YZ2023207)
Corresponding Authors:  DU Jin, E-mail: dj.yangzhou@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.201     OR     https://www.jcscp.org/EN/Y2025/V45/I3/803

Fig.1  Diagram of tribocorrosion testing device: (a) experimental setup diagram, (b) local diagram of the tribocorrosion device
Fig.2  XRD pattern of 7075-T6 Al-alloy
Fig.3  OM image of 7075-T6 Al-alloy
Fig.4  OCP value and friction coefficient of 7075-T6 Al-alloy in 3.5%NaCl solution
Fig.5  Potentiodynamic polarization curves for the 7075-T6 Al-alloy under pure corrosion and tribocorrosion conditions in 3.5%NaCl solution
Experimental conditionEcorr / VIcorr / μA·cm-2
Pure corrosion-1.01 ± 0.020.67 ± 0.02
Tribocorrosion-1.14 ± 0.0312.23 ± 2.16
Table 1  Tafel results of 7075-T6 Al-alloy under pure corrosion and tribocorrosion conditions in 3.5%NaCl solution
Fig.6  Current density and friction coefficient of 7075-T6 Al-alloy under -1.5 VAg/AgCl (a) and -0.7 VAg/AgCl (b) in 3.5%NaCl solution
Fig.7  Friction coefficient of 7075-T6 Al-alloy under dry sliding and tribocorrosion in 3.5%NaCl conditions
Fig.8  Wear resistance of 7075-T6 Al-alloy under dry sliding and tribocorrosion in 3.5%NaCl conditions: (a) dry sliding, (b) OCP, (c) -1.5 VAg/AgCl, (d) -0.7 VAg/AgCl, (e) wear track profiles
Fig.9  Wear rates of 7075-T6 Al-alloy under dry sliding and tribocorrosion in 3.5%NaCl conditions
Fig.10  Wear scars of Si3N4 balls under dry sliding and tribocorrosion in 3.5%NaCl conditions: (a) dry sliding, (b) OCP, (c) -1.5 VAg/AgCl, (d) -0.7 VAg/AgCl
Fig.11  SEM images of the worn surfaces of 7075-T6 Al-alloy under dry sliding and tribocorrosion in 3.5%NaCl conditions: (a) dry sliding, (b) OCP, (c) -1.5 VAg/AgCl, (d) -0.7 VAg/AgCl
Fig.12  EDS maps of worn surface of 7075-T6 Al-alloy under -1.5 VAg/AgCl (a) and -0.7 VAg/AgCl (b) in 3.5%NaCl solution
Fig.13  XPS spectrum analysis of wear track of 7075-T6: (a) Al 2p, (b) O 1s, (c) Cl 2p
[1] Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
[2] Beura V K, Sharma A, Karanth Y, et al. Corrosion behavior of 7050 and 7075 aluminum alloys processed by reactive additive manufacturing [J]. Electrochim. Acta, 2023, 470: 143357
[3] Liu H, Guo X K, Wang W, et al. Effect of ultrasonic shot peening on microstructure and properties of a 7075 Al-alloy rod [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1293
刘 浩, 郭晓开, 王 维 等. 超声喷丸对7075铝合金棒材组织结构与性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1293
[4] Du J, Zhang J F, Xu J Y, et al. Cavitation-corrosion behaviors of HVOF sprayed WC-25WB-10Co-5NiCr and MoB-25NiCr coatings [J]. Ceram. Int., 2020, 46: 21707
[5] Liu H, Huang X, Huang S Y, et al. Anisotropy of wear and tribocorrosion properties of L-PBF Ti6Al4V [J]. J. Mater. Res. Technol., 2023, 25: 2690
[6] Xiao J K, Xu G M, Chen J, et al. Tribocorrosion behavior of TiZrHfNb-based refractory high-entropy alloys [J]. Wear, 2024, 536-537: 205158
[7] Huang B H, Ye Y X, Wang K, et al. Corrosion damage repair of 7075-T6 aluminum alloy by ultrasonic nanocrystal surface modification [J]. Surf. Coat. Technol., 2023, 474: 130085
[8] Jiang J, Stack M M, Neville A. Modelling the tribo-corrosion interaction in aqueous sliding conditions [J]. Tribol. Int., 2002, 35: 669
[9] Song X P, Wang Y Q, Zhang P, et al. Effect of solution treatment on friction and wear properties of 7055 aluminum alloy [J]. Lubr. Eng., 2020, 45(7): 68
宋晓萍, 王优强, 张 平 等. 固溶处理后7055铝合金的摩擦磨损性能 [J]. 润滑与密封, 2020, 45(7): 68
[10] Sukumaran A K, Zhang C, Nisar A, et al. Tribological behavior of Al 6061 and Ti6Al4V alloys against lunar regolith simulants at extreme temperatures [J]. Wear, 2023, 530-531: 205028
[11] Li S X, Liu Z W. Influence of temperature on friction and wear behavior of 6061 aluminum alloy [J]. Mater. Mech. Eng., 2016, 40(1): 20
李斯旭, 刘志文. 温度对6061铝合金摩擦磨损行为的影响 [J]. 机械工程材料, 2016, 40(1): 20
[12] Sun L, Li Y D, Ma Y, et al. Fretting wear behavior of microarc oxidation film on A356 aluminum alloy [J]. Rare Metal Mater. Eng., 2024, 53: 796
孙 璐, 李元东, 马 颖 等. A356铝合金微弧氧化膜微动磨损行为的研究 [J]. 稀有金属材料与工程, 2024, 53: 796
[13] Xu F H, Liu G L, Ding R, et al. Effect of cryogenic, solution and aging combined heat treatment on friction and wear properties of vacuum die-cast Al alloy [J]. Tribology, 2024, 44(11): 1
许福海, 刘光磊, 丁 冉 等. 深冷、固溶和时效处理对真空压铸铝合金摩擦磨损性能的影响 [J]. 摩擦学学报, 2024, 44(11): 1
[14] Wang F, Zhang K X, Liu D, et al. Effects of rolling and aging on mechanical properties, friction and wear properties of 7050 aluminum alloy [J]. Hot Work. Technol., 2025, 54(2): 91
王 帆, 张坷星, 刘 东 等. 轧制及时效对7050铝合金力学性能和摩擦磨损性能的影响 [J]. 热加工工艺, 2025, 54(2): 91
[15] Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. J. Mater. Res. Technol., 2021, 12: 1350
[16] Meng S P, Yu Y Q, Zhang X B, et al. Investigations on electrochemical corrosion behavior of 7075 aluminum alloy with femtosecond laser modification [J]. Vacuum, 2024, 221: 112911
[17] Li B, He J H, Zhang C, et al. Study on the corrosion behavior of 6061 aluminum alloy in 3.5%NaCl solution immersion test [J]. Sichuan Chem. Ind., 2023, 26(2): 1
李 波, 何锦航, 张 聪 等. 铝合金(6061)在3.5%NaCl溶液浸泡实验中的腐蚀行为研究 [J]. 四川化工, 2023, 26(2): 1
[18] Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
[19] Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferr. Metal., 2009, 19: 346
董超芳, 安英辉, 李晓刚 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346
[20] Wang J Y, Kong X D. Electrochemical corrosion behavior of two Al-based alloys in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 41
汪俊英, 孔小东. 两种铝合金在3%NaCl溶液中的腐蚀特性 [J]. 腐蚀科学与防护技术, 2011, 23: 41
[21] Alberta L A, Vishnu J, Douest Y, et al. Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution [J]. Tribol. Int., 2023, 181: 108325
[22] Cao S F, Mischler S. Modeling tribocorrosion of passive metals-a review [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 127
[23] Zhang H W, Cui H Z, Man C, et al. The tribocorrosion resistance of TiN + TiB/TC4 composite coatings and the synergistic strengthening effects of multi-level reinforcements [J]. Corros. Sci., 2023, 219: 111224
[24] Zhu S Y, Bi Q L, Yang J, et al. Tribological behavior of Ni3Al alloy at dry friction and under sea water environment [J]. Tribol. Int., 2014, 75: 24
[25] Li M J, Chen Q J, Cui X, et al. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment [J]. J. Alloy. Compd., 2021, 857: 158278
[26] Ren P W, Meng H M, Xia Q J, et al. Tribocorrosion of 316L stainless steel by in-situ electrochemical methods under deep-sea high hydrostatic pressure environment [J]. Corros. Sci., 2022, 202: 110315
[27] Riquelme A, Rodrigo P, Escalera-Rodríguez M D, et al. Corrosion resistance of Al/SiC laser cladding coatings on AA6082 [J]. Coatings, 2020, 10: 673
[1] MAO Chunkui, ZHU Zhiping, LI Tao, ZHOU Shangming, YANG Huo. Optimization and Applicability of Chemical Agents for Reclaimed Water, as Circulating Cooling Water of Thermal Power Plant[J]. 中国腐蚀与防护学报, 2025, 45(3): 675-686.
[2] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[3] SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[4] HOU Xiaoben, LIU Ning, HU Junying. Corrosion Behavior and Distribution of Corrosion Inhibitors in Inclined Section for Natural Gas Gathering and Transportation Pipelines[J]. 中国腐蚀与防护学报, 2025, 45(3): 780-786.
[5] SHEN Chen, HUANG Jinyang, ZHANG Xingxing, HU Xinyuan, ZHU Ming, LU Jintao. Research Progress of Carbonization-corrosion and Protection of Alloy Steels[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[6] WANG Yuhan, LI Jun, LIU Hengwei, XU Nan, LIU Jie, CHEN Xu. Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[7] CHEN Siyu, WANG Jingyu, GAO Liqiang. Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[8] ZHANG Chao, CHEN Junhang, ZOU Shiwen, ZHANG Huan, LI Zhaoliang, XIAO Kui. Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[9] LIU Jiabing, HUANG Shiyu, GUO Na, GUO Zhangwei, LIU Tao. Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[10] ZHENG Wentao, LU Feixue, DU Kai, WANG Zhihui, JIA Hailong. Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[11] ZHENG Wei, QU Dongyang, SUN Zhonghui, NIU Li. Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes[J]. 中国腐蚀与防护学报, 2025, 45(3): 548-562.
[12] PENG Liyuan, XIE Jingli, CAO Shengfei, TAN Jibo, WU Xinqiang, ZHANG Ziyu. Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[13] WEI Ran, JIANG Quantong, SUN Chen, WANG Weiwei, DUAN Jizhou, HOU Baorong. A Review on Corrosion and Protection of Mg-alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[14] WANG Deling, LIU Yijun, GUO Zhangwei, LIU Tao. Research Progress on Failure Analysis and Protective Measures of Ship Hull Materials[J]. 中国腐蚀与防护学报, 2025, 45(3): 611-619.
[15] CHEN Lijuan, CHAO Liuwei, ZHAO Jingmao. Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
No Suggested Reading articles found!