|
|
Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution |
DU Jin1( ), HU Linlan1, SUN Jian1, SONG Qinghua1, CHEN Meng1, XIAO Jinkun2 |
1.School of Mechanical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China 2.School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China |
|
Cite this article:
DU Jin, HU Linlan, SUN Jian, SONG Qinghua, CHEN Meng, XIAO Jinkun. Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 803-811.
|
Abstract The tribo-corrosion performance of 7075-T6 Al-alloy in 3.5% (mass fraction) NaCl solution was studied, while the variation of the passivation film and the tribo-corroded surface was also examined versus the tribo-corrosion process. The results demonstrate that sliding friction leads to a decrease in the open-circuit potential (OCP) and the potentiodynamic polarization corrosion potential of Al-alloy, whereas, a significant increase in the corrosion current density. In constant cathodic potential condition, the passivation film was removed due to the friction, accelerating the hydrogen evolution reaction. In constant anodic potential condition, friction leads to a significant increase in corrosion current density, accelerating the corrosion of the alloy. XPS analysis result indicates that the primary constituent of the passivation film is Al2O3. In conditions of dry sliding friction, OCP, constant anodic potential, and constant cathodic potential, respectively, the values of friction coefficient and wear rate can be ranked as the following decline order: dry sliding friction>constant anodic potential> OCP>constant cathodic potential. The wear mechanism in dry sliding friction condition is adhesive wear, the wear mechanisms in OCP and constant cathodic potential conditions are abrasive wear, and the wear mechanism in constant anodic potential condition is corrosive wear.
|
Received: 05 July 2024
32134.14.1005.4537.2024.201
|
|
Fund: National Natural Science Foundation of China(52374372);Yangzhou Science and Technology Plan Project(YZ2023207) |
Corresponding Authors:
DU Jin, E-mail: dj.yangzhou@163.com
|
[1] |
Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
|
|
翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
|
[2] |
Beura V K, Sharma A, Karanth Y, et al. Corrosion behavior of 7050 and 7075 aluminum alloys processed by reactive additive manufacturing [J]. Electrochim. Acta, 2023, 470: 143357
|
[3] |
Liu H, Guo X K, Wang W, et al. Effect of ultrasonic shot peening on microstructure and properties of a 7075 Al-alloy rod [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1293
|
|
刘 浩, 郭晓开, 王 维 等. 超声喷丸对7075铝合金棒材组织结构与性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1293
|
[4] |
Du J, Zhang J F, Xu J Y, et al. Cavitation-corrosion behaviors of HVOF sprayed WC-25WB-10Co-5NiCr and MoB-25NiCr coatings [J]. Ceram. Int., 2020, 46: 21707
|
[5] |
Liu H, Huang X, Huang S Y, et al. Anisotropy of wear and tribocorrosion properties of L-PBF Ti6Al4V [J]. J. Mater. Res. Technol., 2023, 25: 2690
|
[6] |
Xiao J K, Xu G M, Chen J, et al. Tribocorrosion behavior of TiZrHfNb-based refractory high-entropy alloys [J]. Wear, 2024, 536-537: 205158
|
[7] |
Huang B H, Ye Y X, Wang K, et al. Corrosion damage repair of 7075-T6 aluminum alloy by ultrasonic nanocrystal surface modification [J]. Surf. Coat. Technol., 2023, 474: 130085
|
[8] |
Jiang J, Stack M M, Neville A. Modelling the tribo-corrosion interaction in aqueous sliding conditions [J]. Tribol. Int., 2002, 35: 669
|
[9] |
Song X P, Wang Y Q, Zhang P, et al. Effect of solution treatment on friction and wear properties of 7055 aluminum alloy [J]. Lubr. Eng., 2020, 45(7): 68
|
|
宋晓萍, 王优强, 张 平 等. 固溶处理后7055铝合金的摩擦磨损性能 [J]. 润滑与密封, 2020, 45(7): 68
|
[10] |
Sukumaran A K, Zhang C, Nisar A, et al. Tribological behavior of Al 6061 and Ti6Al4V alloys against lunar regolith simulants at extreme temperatures [J]. Wear, 2023, 530-531: 205028
|
[11] |
Li S X, Liu Z W. Influence of temperature on friction and wear behavior of 6061 aluminum alloy [J]. Mater. Mech. Eng., 2016, 40(1): 20
|
|
李斯旭, 刘志文. 温度对6061铝合金摩擦磨损行为的影响 [J]. 机械工程材料, 2016, 40(1): 20
|
[12] |
Sun L, Li Y D, Ma Y, et al. Fretting wear behavior of microarc oxidation film on A356 aluminum alloy [J]. Rare Metal Mater. Eng., 2024, 53: 796
|
|
孙 璐, 李元东, 马 颖 等. A356铝合金微弧氧化膜微动磨损行为的研究 [J]. 稀有金属材料与工程, 2024, 53: 796
|
[13] |
Xu F H, Liu G L, Ding R, et al. Effect of cryogenic, solution and aging combined heat treatment on friction and wear properties of vacuum die-cast Al alloy [J]. Tribology, 2024, 44(11): 1
|
|
许福海, 刘光磊, 丁 冉 等. 深冷、固溶和时效处理对真空压铸铝合金摩擦磨损性能的影响 [J]. 摩擦学学报, 2024, 44(11): 1
|
[14] |
Wang F, Zhang K X, Liu D, et al. Effects of rolling and aging on mechanical properties, friction and wear properties of 7050 aluminum alloy [J]. Hot Work. Technol., 2025, 54(2): 91
|
|
王 帆, 张坷星, 刘 东 等. 轧制及时效对7050铝合金力学性能和摩擦磨损性能的影响 [J]. 热加工工艺, 2025, 54(2): 91
|
[15] |
Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. J. Mater. Res. Technol., 2021, 12: 1350
|
[16] |
Meng S P, Yu Y Q, Zhang X B, et al. Investigations on electrochemical corrosion behavior of 7075 aluminum alloy with femtosecond laser modification [J]. Vacuum, 2024, 221: 112911
|
[17] |
Li B, He J H, Zhang C, et al. Study on the corrosion behavior of 6061 aluminum alloy in 3.5%NaCl solution immersion test [J]. Sichuan Chem. Ind., 2023, 26(2): 1
|
|
李 波, 何锦航, 张 聪 等. 铝合金(6061)在3.5%NaCl溶液浸泡实验中的腐蚀行为研究 [J]. 四川化工, 2023, 26(2): 1
|
[18] |
Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
|
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
|
[19] |
Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferr. Metal., 2009, 19: 346
|
|
董超芳, 安英辉, 李晓刚 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346
|
[20] |
Wang J Y, Kong X D. Electrochemical corrosion behavior of two Al-based alloys in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 41
|
|
汪俊英, 孔小东. 两种铝合金在3%NaCl溶液中的腐蚀特性 [J]. 腐蚀科学与防护技术, 2011, 23: 41
|
[21] |
Alberta L A, Vishnu J, Douest Y, et al. Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution [J]. Tribol. Int., 2023, 181: 108325
|
[22] |
Cao S F, Mischler S. Modeling tribocorrosion of passive metals-a review [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 127
|
[23] |
Zhang H W, Cui H Z, Man C, et al. The tribocorrosion resistance of TiN + TiB/TC4 composite coatings and the synergistic strengthening effects of multi-level reinforcements [J]. Corros. Sci., 2023, 219: 111224
|
[24] |
Zhu S Y, Bi Q L, Yang J, et al. Tribological behavior of Ni3Al alloy at dry friction and under sea water environment [J]. Tribol. Int., 2014, 75: 24
|
[25] |
Li M J, Chen Q J, Cui X, et al. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment [J]. J. Alloy. Compd., 2021, 857: 158278
|
[26] |
Ren P W, Meng H M, Xia Q J, et al. Tribocorrosion of 316L stainless steel by in-situ electrochemical methods under deep-sea high hydrostatic pressure environment [J]. Corros. Sci., 2022, 202: 110315
|
[27] |
Riquelme A, Rodrigo P, Escalera-Rodríguez M D, et al. Corrosion resistance of Al/SiC laser cladding coatings on AA6082 [J]. Coatings, 2020, 10: 673
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|