Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 675-686    DOI: 10.11902/1005.4537.2024.162
Current Issue | Archive | Adv Search |
Optimization and Applicability of Chemical Agents for Reclaimed Water, as Circulating Cooling Water of Thermal Power Plant
MAO Chunkui, ZHU Zhiping(), LI Tao, ZHOU Shangming, YANG Huo
School of Chemistry and Chemical Engineering, Changsha University of Science & Technology, Changsha 410114, China
Cite this article: 

MAO Chunkui, ZHU Zhiping, LI Tao, ZHOU Shangming, YANG Huo. Optimization and Applicability of Chemical Agents for Reclaimed Water, as Circulating Cooling Water of Thermal Power Plant. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 675-686.

Download:  HTML  PDF(11252KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The reuse of reclaimed water as a source of circulating cooling water for thermal power plants is an increasingly common way to save water. However, it has led to troubles such as microbial growth, corrosion and scaling. Herein, the performance of composite agents in scaling inhibition, bactericidal and corrosion inhibition was assessed for commercial Q235 carbon steel in reclaimed water was assessed used as circulating cooling water of thermal power plant via static scale inhibition method, biocide energy efficiency evaluation method, electrochemical and response surface analysis method etc. The test specimens were analyzed in terms of morphology and composition by using SEM, metallography and EDS. The results showed that the optimal formulation of composite chemical agents for the candidate reclaimed water as the recycling circulating cooling water is as follows: scale inhibitor 17 mg/L + biocide 40 mg/L + sodium gluconate 90 mg/L + zinc sulfate 11 mg/L, which presents a scale inhibition rate of 95.7%, a bactericidal effective time of 15 d, and a corrosion inhibition rate of 91.27%. Furthermore, there is a better synergistic effect between the various agents, and the composite agents can inhibit the cathodic and anodic reactions simultaneously. The composite agents can inhibit cathodic and anodic reaction at the same time, which is a kind of hybrid, multi-functional, environmentally friendly agent for cooling circulating water treatment.

Key words:  reclaimed water      response surface optimization      sterilization      scale inhibition      corrosion inhibition     
Received:  25 May 2024      32134.14.1005.4537.2024.162
ZTFLH:  TG174  
Fund: Scientific Research Key Project of Hunan Provincial Department of Education(23A0269)
Corresponding Authors:  ZHU Zhiping, E-mail: zzp8389@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.162     OR     https://www.jcscp.org/EN/Y2025/V45/I3/675

Fig.1  Scale inhibition rates of various phosphine-free (a) and phosphine-containing (b) scale inhibitors as a function of the concentration
Fig.2  Scale inhibition performances of HPMA-HEDP composite scale inhibitors as a function of the concentration
Fig.3  SEM images of the scales formed in water without (a) and with (b) 16 mg/L HPMA-2%HEDP
Fig.4  Bactericidal effects of isothiazolinone (a) and tetradecyl dimethyl benzyl ammonium chloride (b) with different concentrations
Fig.5  Sterilization rates of the composite fungicides as a function of sterilization time
Fig.6  Corrosion rates and corrosion inhibitions of Q235 steel after the additions of the composite scale inhibitors (a) and composite fungicides (b)
Fig.7  Effects of the concentrations of sodium gluconate (a) and zinc sulfate (b) corrosion inhibitors on mass losses of Q235 steel
Experiment No·ABCCorrosion inhibition / %
112801287.64
218801090.2
31860869.66
424801282.61
524601077.36
618801088.29
7181001287.3
818801092.69
918100882.69
10121001088.96
1112601071.12
122480884.55
131280876.59
1418801091.6
15241001085.98
1618801089.2
1718601278.91
Table 1  Box-behnken experimental design and results
ParametersFactorsLevel
-101
Detergent / mg·L-1A121824
Sodium gluconate / mg·L-1B6080100
Zinc sulfate / mg·L-1C81012
Table 2  Box-Behnken experimental factors and levels for corrosion inhibition performance evaluation
SourceSun of SquaresDfMean squareF-valueP-valueSignificance
Model751.17983.4631.37< 0.0001**
A4.7914.791.800.2216
B286.561286.56107.70< 0.0001**
C65.95165.9524.790.0016**
AB21.25121.257.990.0255*
AC42.19142.1915.850.0053**
BC5.3815.382.020.1979
A242.22142.2215.870.0053**
B2171.081171.0864.30< 0.0001**
C280.84180.8430.380.0009**
Residual18.6372.66
Lack of fit6.0132.000.63510.6305
Pure error12.6243.15
Cor total769.8016
Table 3  ANOVA analysis results of regression model for corrosion inhibitions of corrosion inhibitors
Fig.8  Three-dimensional spatial surface responses of three agents to corrosion inhibition rate of Q235 steel: (a) sodium gluconate and scale inhibitors, (b) zinc sulfate and scale inhibitors, (c) sodium gluconate and zinc sulfate
Fig.9  Metallographic micrographs of Q235 steel after corrosion under the conditions of agent free (a) and additions of ternary mixture (b) and quaternary mixture (c)
Fig.10  Polarization curves (a) and Nyquist plots (b) of Q235 steel in different corrosion inhibition systems
ParametersEcorr / mVIcorr / μA·cm-2ba / V·dec-1-bc / V·dec-1Rs / Ω·cm2Rct / Ω·cm2Cdl / μF·cm-2
Blank-603121.75.3622.421136333.8607.1
Three-component system-53157.826..2172.551153.5755.5425.9
Four-component system-38811.876.0414.387194.64566184.5
Table 4  Fitting electrochemical parameters
Fig.11  Equivalent circuit model used to fit EIS
Fig.12  SEM images (a, b) and EDS patterns (c, d) of Q235 steel after immersion in blank system (a, c) and composite water treatment agent system (b, d)
ElementBlank systemCompound water treatment agent system
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
O21.0747.75--
Fe76.7649.9097.9597.17
Mg0.260.340.190.43
Ca1.391.250.380.52
Si0.260.340.551.09
Na0.260.42--
Zn--0.930.79
Aggregate100.00100.00100.00100.00
Table 5  EDS elemental analysis of the surface of Q235 steel after immersion in blank system and composite water treatment agent system
Fig.13  Inhibition mechanism diagram of composite water treatment agent for corrosion of Q235 steel
[1] Wang J. Analysis of water source for the utilization of reclaimed water in thermal power plant [J]. China Water Power Electrif., 2023, (7): 53
王 俊. 热电厂中水利用水源问题探析 [J]. 中国水能及电气化, 2023, (7): 53
[2] Chen C M, Wang Y, Liu S T, et al. Research on the application of compound microorganism preparation in reusing urban reclaimed water in circulating cooling water system [J]. Water Sci. Technol., 2019, 80: 1763
doi: 10.2166/wst.2019.430 pmid: 32039908
[3] Yang J, Jiang M, Zhang D J, et al. Discussion on the problems existing in reclaimed water used as recycled water in thermal power plants [J]. Electr. Power Technol. Environ. Prot., 2011, 27(2): 35
杨 洁, 姜 梅, 张得君 等. 中水回用于火电厂循环水存在问题探讨 [J]. 电力科技与环保, 2011, 27(2): 35
[4] Liu Z A. Study of treatment technics for recirculating cooling system in power plant by reusing intermediate water of city [D]. Baoding: North China Electric Power University (Hebei), 2007
刘智安. 城市中水回用于火电厂循环冷却水的处理工艺研究 [D]. 保定: 华北电力大学(河北), 2007
[5] Lu Z M. Research and application of reclaimed water for circulating cooling water system [D]. Changsha: Central South University, 2010
鲁战明. 中水回用于循环冷却水系统的研究与应用 [D]. 长沙: 中南大学, 2010
[6] Zhu Z P, Dai C L, Liu S, et al. Oxidative decomposition properties of cationic exchange resins producing SO 4 2 - in power plants [J]. Water Sci. Technol., 2015, 71: 1478
[7] Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
[8] State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Determination of scale inhibition performance of water treatment chemicals-Calcium carbonate precipitation method [S]. Beijing: Standards Press of China, 2019
国家市场监督管理总局, 中国国家标准化管理委员会. 水处理剂阻垢性能的测定 碳酸钙沉积法 [S]. 北京: 中国标准出版社, 2019
[9] Zhong H Y, Liu F, Lu J J, et al. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides [J]. Environ. Technol., 2015, 36: 1147
doi: 10.1080/09593330.2014.982720 pmid: 25362892
[10] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for efficacy of antimicrobials-aerobic bacteria [S]. Beijing: Standards Press of China, 2009
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 杀生剂能效的评价方法 异养菌 [S]. 北京: 中国标准出版社, 2009
[11] Wang K C, Liu X, Wang L H, et al. Corrosion inhibition of carbon steel by polyaspartic acid and its mixture with sodium gluconate [J]. Mater. Prot., 2007, 40(6): 60
王克诚, 刘 欣, 王丽红 等. 聚天冬氨酸及其与葡萄糖酸钠复配物对碳钢的缓蚀性能研究 [J]. 材料保护, 2007, 40(6): 60
[12] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of corrosion inhibition performance of water treatment agents-Rotation specimen method [S]. Beijing: Standards Press of China, 2014
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水处理剂缓蚀性能的测定 旋转挂片法 [S]. 北京: 中国标准出版社, 2014
[13] Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 217
赵 维, 夏明珠, 雷 武 等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究 [J]. 中国腐蚀与防护学报, 2002, 22: 217
[14] Li M D, Dai C L, Yang B, et al. New and green multi-component scaling and corrosion inhibitor for the cooling water of central air conditioners [J]. J. Mater. Eng. Perform., 2017, 26: 764
[15] Dai C L, Li M D, Yang B, et al. Performance of environmentally friendly corrosion-and scaling-inhibitor for central air conditioner cooling water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 407
代陈林, 李茂东, 杨 波 等. 中央空调环保复合型阻垢缓蚀剂的筛选及性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 407
doi: 10.11902/1005.4537.2015.186
[16] Xu P, Zhao M H, Bai P K. Effect of Hydroxyethylidene diphosphonic acid on iron bacteria induced corrosion of carbon steel in circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 988
许 萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究 [J]. 中国腐蚀与防护学报, 2022, 42: 988
[17] Tang Y M, Yang W Z, Yin X S, et al. Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP [J]. Desalination, 2008, 228: 55
[18] Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design of industrial recirculating cooling water treatment [S]. Beijing: China Planning Press, 2017
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 工业循环冷却水处理设计规范 [S]. 北京: 中国计划出版社, 2017
[19] Ma Y P, Zhao X L. Study on bactericide effect of circulating cooling water in thermal power plant [J]. Chem. Enterp. Manage., 2017, (12): 117
马运平, 赵晓林. 火电厂循环冷却水杀菌剂杀菌效果研究 [J]. 化工管理, 2017, (12): 117
[20] Peng Y, Hughes A E, Deacon G B, et al. A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions [J]. Corros. Sci., 2018, 145: 199
[21] Liu C, Zhu L, Ji R P. Direct contact membrane distillation (DCMD) process for simulated brackish water treatment: an especial emphasis on impacts of antiscalants [J]. J. Membr. Sci., 2022, 643: 120017
[22] Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
王坤泰, 陈 馥, 李 环 等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248
doi: 10.11902/1005.4537.2020.105
[23] Zhu Z P, He M P, Zhou P, et al. Kinetic Analysis and response surface optimization of electroflocculation treatment of organics in make-up water [J]. Proc. CSEE, 2022, 42: 8243
朱志平, 贺明鹏, 周 攀 等. 电絮凝处理补给水中有机物的动力学分析及响应面优化 [J]. 中国电机工程学报, 2022, 42: 8243
[24] Tong J X, Zhu Z P, Yang Y S, et al. Removal of chemical oxygen demand from ethylenediaminetetraacetic acid cleaning wastewater with electrochemical treatment [J]. Sep. Purif. Technol., 2021, 267: 118651
[25] Shi X Y, Zhu Z P, Cao J, et al. Application of response surface analysis in the research on the green and rapid phosphating process [J]. China Surf. Eng., 2023, 36(3): 223
石西尧, 朱志平, 曹 洁 等. 响应面分析法在绿色快速磷化工艺研发中的应用 [J]. 中国表面工程, 2023, 36(3): 223
[26] Bai L J, Zhang Y L, Liu Q Y, et al. Optimized the production process of solidified goat's milk yogurt [J]. China Dairy Ind., 2020, 48(1): 56
白丽娟, 张英龙, 刘青云 等. 响应面法优化凝固型羊奶酸奶生产工艺 [J]. 中国乳品工业, 2020, 48(1): 56
[27] Liu H Y, Liu X H, Shi C J, et al. Corrosion inhibition performance and mechanism of a compound corrosion inhibitor to Q235 carbon steel [J]. Ind. Water Treat., 2022, 42(9): 124
刘会媛, 柳鑫华, 石春杰 等. 一种复配缓蚀剂对Q235碳钢的缓蚀性能及机理研究 [J]. 工业水处理, 2022, 42(9): 124
doi: 10.19965/j.cnki.iwt.2021-1229
[1] ZHANG Hongjiang, CHEN Jiaqi, XIE Weiwei, LIU Zhongxuan, DONG Sheying. Design and Performance of Acrylic Acid-motherwort Dregs Composite Carbon Dots for Fluorescent Scale Inhibitor[J]. 中国腐蚀与防护学报, 2025, 45(3): 812-820.
[2] MU Xianju, LI Xianghong, LEI Ran, DENG Shuduan. Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1465-1475.
[3] SHI Chengjie, LEI Ran, DENG Shuduan, XU Juan, SHAO Dandan, GUO Qingqing, LI Xianghong. Corrosion Inhibition of Erigeron canadensis L.Extract for Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1189-1199.
[4] FENG Likui, CHENG Yijie, SONG Xiaoning, YU Zhiyong, YAN Zixuan, ZHANG Daquan. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
[5] ZHOU Wenbin, LI Mengran, ZHOU Xin, SUN Haijing, SUN Jie. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
[6] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[7] DENG Zhihua, LEI Ran, ZHANG Zhiyong, YANG Weiyu, LI Xianghong. Corrosion Inhibition of Vetiver Extract on Steel in Hydrochloric Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 173-178.
[8] LIU Yongqiang, LIU Guangming, FAN Wenxue, TANG Rongmao, GAN Hongyu, SHI Chao. Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[9] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[10] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[11] SUN Dan, LI Wei, WEI Runzhi, WANG Sheng, HAN Jiaxing, LIU Zheng. Theoretical Evaluation of 2-aminofluorenic Double Schiff Base Corrosion Inhibitor Based on Quantum Chemistry[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[14] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
No Suggested Reading articles found!