Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 548-562    DOI: 10.11902/1005.4537.2024.110
Current Issue | Archive | Adv Search |
Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes
ZHENG Wei, QU Dongyang, SUN Zhonghui(), NIU Li()
Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, China
Cite this article: 

ZHENG Wei, QU Dongyang, SUN Zhonghui, NIU Li. Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 548-562.

Download:  HTML  PDF(19971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a secondary battery, aqueous zinc-ion battery has advantages of good safety, low cost and high energy density, and is expected to become a substitute candidate for the next generation of energy storage systems. As a promising energy storage device, aqueous zinc-ion batteries have made major breakthroughs in many research fields. However, the corrosion of zinc metal anode is still a key factor hindering its development, which seriously weakens the stability and service life of zinc-ion batteries in practical applications. Therefore, it is of great application value to study how to prevent the corrosion of zinc metal anode. In this paper, the corrosion protection strategies and research progress for zinc metal anode and electrolyte in aqueous zinc-ion batteries are systematically summarized, and the further application prospect is prospected.

Key words:  zinc-ion battery      zinc metal anodes      electrolyte      corrosion protection     
Received:  02 April 2024      32134.14.1005.4537.2024.110
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(22204028);National College Students' Innovation Training Program(202411078017)
Corresponding Authors:  SUN Zhonghui, E-mail: cczhsun@gzhu.edu.cn; NIU Li, E-mail: lniu@gzhu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.110     OR     https://www.jcscp.org/EN/Y2025/V45/I3/548

Fig.1  Schematic illustrations of Zn deposition process on bare Zn and Cu@Zn electrodes[20]
Fig.2  Schematic depiction of Zn deposition on ZnIn electrode[21]
Fig.3  Schematic diagram of the anode: synthesis process of Tar-Zn and the behavior of bare Zn (a) and Tar-Zn (b) in electrolytes[24]
Fig.4  Schematic illustrations of Zn2+ ion reduction process on bare Zn (a) and Ti4O7@Zn (b), and preparations of Ti4O7, Ti9O17 and Ti4O7@Zn electrode (c), simulated field distributions of concentration (d, e) and current density (f, g) on bare Zn and Ti4O7@Zn after different time[25]
Fig.5  Schematic diagrams of the static and cyclic progress of FG@Zn and bare Zn in an aqueous electrolyte[26]
Fig.6  Schematic diagrams of Zn deposition on bare Zn (a) and coated Zn (b), suggesting the role of PA layer in the inhibition of side reactions[28]
Fig.7  Schematic diagrams of the preparation of 502 glue protective layer (a)and the mechanism of 502 glue for suppressing Zn dendrite (b)[29]
Fig.8  Schematic diagrams of ultrasonic spraying method (a) and zinc deposition process on bare Zn and Nafion/BM@Zn (b)[35]
MaterialCycle lifeCEReference
Cu4000 h (2 mA·cm-2)99.87% (1500 cycles of 5 mAh·cm-2)[20]
Zn(H2PO4)21000 h (1 mA·cm-2)-[22]
SEP-OH800 h (5 mA·cm-2)99.2% (100 cycles of 5 mAh·cm-2)[23]
Tar-Zn1300 h (2 mA·cm-2)-[24]
Ti4O72600 h (1 mA·cm-2)99% (500 cycles of 1 mAh·cm-2)[25]
FG1400 h (10 mA·cm-2)-[26]
502 glue800 h (0.5 mA·cm-2)-[29]
NFSS1500 h (1 mA·cm-2)-[31]
Aluminone780 h (3 mA·cm-2)-[33]
BTO/PVT3000 h (1 mA·cm-2)99.6% (950 cycles of 0.5 mAh·cm-2)[34]
Nafion/BM4200 h (5 mA·cm-2)99.91% (2800 cycles of 1 mAh·cm-2)[35]
Table 1  Summary of properties of various coating materials
Fig.9  Schematics of morphology evolution for Zn anode in mild aqueous electrolyte with and without Et2O additive during Zn stripping-plating cyclic process[54]
Fig.10  FTIR spectra of 2 mol/L ZnSO4 electrolytes with 0, 0.5%, 1.0%, and 5.0% (mass fraction) Cit addition (a) and MD simulation snapshots of the Cit/ZnSO4 electrolyte and the local solvation structure of hydrated Zn2+ (b)[57]
Fig.11  Flexible ZIBs successfully power LEDs under various dynamic deformations, including pressing, folding, bending, hammering and twisting[58]
[1] Ma L, Schroeder M A, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries [J]. Nat. Energy, 2020, 5: 743
[2] Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries [J]. Joule, 2020, 4: 771
[3] Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
[4] Yue X Y, Yao Y X, Zhang J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries [J]. Adv. Mater., 2022, 34: 2110337
[5] Zhao C X, Liu J N, Yao N, et al. Can aqueous zinc-air batteries work at sub‐zero temperatures? [J]. Angew. Chem. Int. Ed., 2021, 60: 15281
[6] Yu P, Zeng Y X, Zhang H Z, et al. Flexible Zn‐ion batteries: recent progresses and challenges [J]. Small, 2019, 15: 1804760
[7] Wu F F, Gao X B, Xu X L, et al. MnO2 nanosheet‐assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc‐ion batteries [J]. ChemSusChem, 2020, 13: 1537
[8] Song Y, Ruan P C, Mao C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries [J]. Nano-Micro Lett., 2022, 14: 218
doi: 10.1007/s40820-022-00960-z pmid: 36352159
[9] Li C P, Xie X S, Liu H, et al. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries [J]. Natl. Sci. Rev., 2022, 9: nwab177
[10] Nie W, Cheng H W, Sun Q C, et al. Design strategies toward high-performance Zn metal anode [J]. Small Methods, 2024, 8: 2201572
[11] Ming J, Guo J, Xia C, et al. Zinc-ion batteries: materials, mechanisms, and applications [J]. Mat. Sci. Eng., 2019, 135R: 58
[12] Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes [J]. Small Methods, 2019, 3: 1800272
[13] Zhou J, Shan L T, Wu Z X, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode [J]. Chem. Commun., 2018, 54: 4457
[14] Hu P, Yan M Y, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life [J]. ACS Appl. Mater. Interfaces, 2017, 9: 42717
[15] Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 1
[16] Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3: 2480
[17] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
pmid: 15669155
[18] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4: 1321
doi: 10.1021/nn901850u pmid: 20155972
[19] Huang X Y, Wang D, Yuan Z Y, et al. A fully biodegradable battery for self‐powered transient implants [J]. Small, 2018, 14: 1800994
[20] Liu S S, Liang Y R, Chen W L, et al. Ultrathin surface coating of Cu enabling long-life Zn metal anodes [J]. Rare Met., 2024, 43: 2125
[21] Wang T, Xi Q, Yao K, et al. Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode [J]. Nano-Micro Lett., 2024, 16: 112
doi: 10.1007/s40820-024-01327-2 pmid: 38334816
[22] Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
[23] Wang Y P, Lin X G, Wang L, et al. Tailoring the crystal‐chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2211088
[24] Wen Q, Fu H, Huang Y D, et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode [J]. Nano Energy, 2023, 117: 108810
[25] Song Y, Liu Y D, Luo S J, et al. Blocking the dendrite‐growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc‐ion batteries [J]. Adv. Funct. Mater., 2024, 34: 2316070
[26] Wang L Q, Zhang L, Meng Y H, et al. Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries [J]. Sci. China Mater., 2023, 66: 4595
[27] Li Y, Guo Y F, Li Z X, et al. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries [J]. Energy Storage Mater., 2024, 67: 103300
[28] Zhao Z M, Zhao J W, Hu Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy Environ. Sci., 2019, 12: 1938
[29] Cao Z Y, Zhu X D, Xu D X, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J]. Energy Storage Mater., 2021, 36: 132
[30] Chen P, Yuan X H, Xia Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries [J]. Adv. Sci., 2021, 8: 2100309
[31] Duan J W, Dong J M, Cao R R, et al. Regulated Zn plating and stripping by a multifunctional polymer‐alloy interphase layer for stable Zn metal anode [J]. Adv. Sci., 2023, 10: 2303343
[32] Liu M Q, Yang L Y, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect [J]. ACS Appl. Mater. Interfaces, 2019, 11: 32046
[33] He H B, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes [J]. J. Mater. Chem., 2020, 8A: 22100
[34] Zong Q, Lv B, Liu C F, et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating [J]. ACS Energy Lett., 2023, 8: 2886
[35] Zhou C C, Shan L T, Nan Q, et al. Construction of robust organic-inorganic interface layer for dendrite-free and durable zinc metal anode [J]. Adv. Funct. Mater., 2024, 34: 2312696
[36] Chen J J, Xiong J M, Ye M H, et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes [J]. Adv. Funct. Mater., 2024, 34: 2312564
[37] Zhang R C, Feng Y, Ni Y X, et al. Bifunctional interphase with target‐distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode [J]. Angew. Chem. Int. Ed., 2023, 62: e202304503
[38] Zhang G H, Zhang X N, Liu H Z, et al. 3D‐printed multi‐channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries [J]. Adv. Energy Mater., 2021, 11: 2003927
[39] Zhang M, Yu P F, Xiong K R, et al. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes [J]. Adv. Mater., 2022, 34: 2200860
[40] Zhou J H, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2200782
[41] Zheng Y Y, Wang D, Kaushik S, et al. Ionic liquid electrolytes for next-generation electrochemical energy devices [J]. EnergyChem, 2022, 4: 100075
[42] Li H F, Liu Z X, Liang G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte [J]. ACS Nano, 2018, 12: 3140
doi: 10.1021/acsnano.7b09003 pmid: 29589438
[43] Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
[44] Quan Y H, Zhou W J, Wu T, et al. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries [J]. Chem. Eng. J., 2022, 446: 137056
[45] He Q, Chang Z, Zhong Y, et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect [J]. ACS Energy Lett., 2023, 8: 5253
[46] Wu Q, Huang J, Zhang J L, et al. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh‐rate and dendrite‐free Zn anodes for rechargeable aqueous zinc batteries [J]. Angew. Chem., 2024, 136: e202319051
[47] Zhang Q, Luan J Y, Fu L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc‐oriented polyacrylamide electrolyte additive [J]. Angew. Chem. Int. Ed., 2019, 58: 15841
doi: 10.1002/anie.201907830 pmid: 31437348
[48] Cao L S, Li D, Hu E Y, et al. Solvation structure design for aqueous Zn metal batteries [J]. J. Am. Chem. Soc., 2020, 142: 21404
doi: 10.1021/jacs.0c09794 pmid: 33290658
[49] Liu S L, Mao J F, Pang W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries [J]. Adv. Funct. Mater., 2021, 31: 2104281
[50] Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive [J]. Angew. Chem., 2021, 133: 18395
[51] Sui Y M, Ji X L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries [J]. Chem. Rev., 2021, 121: 6654
[52] Bi H B, Wang X S, Liu H L, et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super-concentrated sugar as hydrogen‐bond‐regulated solute [J]. Adv. Mater., 2020, 32: 2000074
[53] Liu C, Li Q, Lin Y L, et al. Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry [J]. Nano Res. Energy, 2023, 2: e9120064
[54] Xu W N, Zhao K N, Huo W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries [J]. Nano Energy, 2019, 62: 275
[55] Qu Z, Ma J C, Huang Y, et al. A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices [J]. Adv. Mater., 2024, 36: 2310667
[56] Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn‐metal anode stability: key effects of electrolyte additives on ion‐shield‐like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
[57] Chen J Z, Liu N, Dong W J, et al. Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive [J]. Adv. Funct. Mater., 2024, 34: 2313925
[58] Liu Y Q, Gao A M, Hao J N, et al. Soaking-free and self-healing hydrogel for wearable zinc-ion batteries [J]. Chem. Eng. J., 2023, 452: 139605
[59] Han C, Li W J, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries [J]. Nano Energy, 2020, 74: 104880
[1] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[2] WANG Ting, GAO Kun, ZHONG Sainan, ZHANG Zhao. Research Progress on Hydrophobic Modification of Polyurethane Coatings[J]. 中国腐蚀与防护学报, 2024, 44(4): 823-834.
[3] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[4] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[5] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[6] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] LIAN Yancheng, LIANG Fuyuan, HE Jianchao, LI Jin, WU Junwei, LENG Xuesong. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[8] BAO Chenyu, LI Jianmin, YE Mengying, GAO Rongjie. Preparation of TiO2 Nanotube Arrays in Composite Electrolytes and Their Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[9] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[10] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[11] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[12] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[14] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[15] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
No Suggested Reading articles found!