|
|
Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes |
ZHENG Wei, QU Dongyang, SUN Zhonghui( ), NIU Li( ) |
Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, China |
|
Cite this article:
ZHENG Wei, QU Dongyang, SUN Zhonghui, NIU Li. Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 548-562.
|
Abstract As a secondary battery, aqueous zinc-ion battery has advantages of good safety, low cost and high energy density, and is expected to become a substitute candidate for the next generation of energy storage systems. As a promising energy storage device, aqueous zinc-ion batteries have made major breakthroughs in many research fields. However, the corrosion of zinc metal anode is still a key factor hindering its development, which seriously weakens the stability and service life of zinc-ion batteries in practical applications. Therefore, it is of great application value to study how to prevent the corrosion of zinc metal anode. In this paper, the corrosion protection strategies and research progress for zinc metal anode and electrolyte in aqueous zinc-ion batteries are systematically summarized, and the further application prospect is prospected.
|
Received: 02 April 2024
32134.14.1005.4537.2024.110
|
|
Fund: National Natural Science Foundation of China(22204028);National College Students' Innovation Training Program(202411078017) |
Corresponding Authors:
SUN Zhonghui, E-mail: cczhsun@gzhu.edu.cn; NIU Li, E-mail: lniu@gzhu.edu.cn
|
[1] |
Ma L, Schroeder M A, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries [J]. Nat. Energy, 2020, 5: 743
|
[2] |
Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries [J]. Joule, 2020, 4: 771
|
[3] |
Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
|
[4] |
Yue X Y, Yao Y X, Zhang J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries [J]. Adv. Mater., 2022, 34: 2110337
|
[5] |
Zhao C X, Liu J N, Yao N, et al. Can aqueous zinc-air batteries work at sub‐zero temperatures? [J]. Angew. Chem. Int. Ed., 2021, 60: 15281
|
[6] |
Yu P, Zeng Y X, Zhang H Z, et al. Flexible Zn‐ion batteries: recent progresses and challenges [J]. Small, 2019, 15: 1804760
|
[7] |
Wu F F, Gao X B, Xu X L, et al. MnO2 nanosheet‐assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc‐ion batteries [J]. ChemSusChem, 2020, 13: 1537
|
[8] |
Song Y, Ruan P C, Mao C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries [J]. Nano-Micro Lett., 2022, 14: 218
doi: 10.1007/s40820-022-00960-z
pmid: 36352159
|
[9] |
Li C P, Xie X S, Liu H, et al. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries [J]. Natl. Sci. Rev., 2022, 9: nwab177
|
[10] |
Nie W, Cheng H W, Sun Q C, et al. Design strategies toward high-performance Zn metal anode [J]. Small Methods, 2024, 8: 2201572
|
[11] |
Ming J, Guo J, Xia C, et al. Zinc-ion batteries: materials, mechanisms, and applications [J]. Mat. Sci. Eng., 2019, 135R: 58
|
[12] |
Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes [J]. Small Methods, 2019, 3: 1800272
|
[13] |
Zhou J, Shan L T, Wu Z X, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode [J]. Chem. Commun., 2018, 54: 4457
|
[14] |
Hu P, Yan M Y, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life [J]. ACS Appl. Mater. Interfaces, 2017, 9: 42717
|
[15] |
Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 1
|
[16] |
Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3: 2480
|
[17] |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
pmid: 15669155
|
[18] |
Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4: 1321
doi: 10.1021/nn901850u
pmid: 20155972
|
[19] |
Huang X Y, Wang D, Yuan Z Y, et al. A fully biodegradable battery for self‐powered transient implants [J]. Small, 2018, 14: 1800994
|
[20] |
Liu S S, Liang Y R, Chen W L, et al. Ultrathin surface coating of Cu enabling long-life Zn metal anodes [J]. Rare Met., 2024, 43: 2125
|
[21] |
Wang T, Xi Q, Yao K, et al. Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode [J]. Nano-Micro Lett., 2024, 16: 112
doi: 10.1007/s40820-024-01327-2
pmid: 38334816
|
[22] |
Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
|
[23] |
Wang Y P, Lin X G, Wang L, et al. Tailoring the crystal‐chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2211088
|
[24] |
Wen Q, Fu H, Huang Y D, et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode [J]. Nano Energy, 2023, 117: 108810
|
[25] |
Song Y, Liu Y D, Luo S J, et al. Blocking the dendrite‐growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc‐ion batteries [J]. Adv. Funct. Mater., 2024, 34: 2316070
|
[26] |
Wang L Q, Zhang L, Meng Y H, et al. Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries [J]. Sci. China Mater., 2023, 66: 4595
|
[27] |
Li Y, Guo Y F, Li Z X, et al. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries [J]. Energy Storage Mater., 2024, 67: 103300
|
[28] |
Zhao Z M, Zhao J W, Hu Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy Environ. Sci., 2019, 12: 1938
|
[29] |
Cao Z Y, Zhu X D, Xu D X, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J]. Energy Storage Mater., 2021, 36: 132
|
[30] |
Chen P, Yuan X H, Xia Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries [J]. Adv. Sci., 2021, 8: 2100309
|
[31] |
Duan J W, Dong J M, Cao R R, et al. Regulated Zn plating and stripping by a multifunctional polymer‐alloy interphase layer for stable Zn metal anode [J]. Adv. Sci., 2023, 10: 2303343
|
[32] |
Liu M Q, Yang L Y, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect [J]. ACS Appl. Mater. Interfaces, 2019, 11: 32046
|
[33] |
He H B, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes [J]. J. Mater. Chem., 2020, 8A: 22100
|
[34] |
Zong Q, Lv B, Liu C F, et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating [J]. ACS Energy Lett., 2023, 8: 2886
|
[35] |
Zhou C C, Shan L T, Nan Q, et al. Construction of robust organic-inorganic interface layer for dendrite-free and durable zinc metal anode [J]. Adv. Funct. Mater., 2024, 34: 2312696
|
[36] |
Chen J J, Xiong J M, Ye M H, et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes [J]. Adv. Funct. Mater., 2024, 34: 2312564
|
[37] |
Zhang R C, Feng Y, Ni Y X, et al. Bifunctional interphase with target‐distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode [J]. Angew. Chem. Int. Ed., 2023, 62: e202304503
|
[38] |
Zhang G H, Zhang X N, Liu H Z, et al. 3D‐printed multi‐channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries [J]. Adv. Energy Mater., 2021, 11: 2003927
|
[39] |
Zhang M, Yu P F, Xiong K R, et al. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes [J]. Adv. Mater., 2022, 34: 2200860
|
[40] |
Zhou J H, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2200782
|
[41] |
Zheng Y Y, Wang D, Kaushik S, et al. Ionic liquid electrolytes for next-generation electrochemical energy devices [J]. EnergyChem, 2022, 4: 100075
|
[42] |
Li H F, Liu Z X, Liang G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte [J]. ACS Nano, 2018, 12: 3140
doi: 10.1021/acsnano.7b09003
pmid: 29589438
|
[43] |
Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
|
[44] |
Quan Y H, Zhou W J, Wu T, et al. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries [J]. Chem. Eng. J., 2022, 446: 137056
|
[45] |
He Q, Chang Z, Zhong Y, et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect [J]. ACS Energy Lett., 2023, 8: 5253
|
[46] |
Wu Q, Huang J, Zhang J L, et al. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh‐rate and dendrite‐free Zn anodes for rechargeable aqueous zinc batteries [J]. Angew. Chem., 2024, 136: e202319051
|
[47] |
Zhang Q, Luan J Y, Fu L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc‐oriented polyacrylamide electrolyte additive [J]. Angew. Chem. Int. Ed., 2019, 58: 15841
doi: 10.1002/anie.201907830
pmid: 31437348
|
[48] |
Cao L S, Li D, Hu E Y, et al. Solvation structure design for aqueous Zn metal batteries [J]. J. Am. Chem. Soc., 2020, 142: 21404
doi: 10.1021/jacs.0c09794
pmid: 33290658
|
[49] |
Liu S L, Mao J F, Pang W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries [J]. Adv. Funct. Mater., 2021, 31: 2104281
|
[50] |
Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive [J]. Angew. Chem., 2021, 133: 18395
|
[51] |
Sui Y M, Ji X L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries [J]. Chem. Rev., 2021, 121: 6654
|
[52] |
Bi H B, Wang X S, Liu H L, et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super-concentrated sugar as hydrogen‐bond‐regulated solute [J]. Adv. Mater., 2020, 32: 2000074
|
[53] |
Liu C, Li Q, Lin Y L, et al. Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry [J]. Nano Res. Energy, 2023, 2: e9120064
|
[54] |
Xu W N, Zhao K N, Huo W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries [J]. Nano Energy, 2019, 62: 275
|
[55] |
Qu Z, Ma J C, Huang Y, et al. A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices [J]. Adv. Mater., 2024, 36: 2310667
|
[56] |
Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn‐metal anode stability: key effects of electrolyte additives on ion‐shield‐like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
|
[57] |
Chen J Z, Liu N, Dong W J, et al. Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive [J]. Adv. Funct. Mater., 2024, 34: 2313925
|
[58] |
Liu Y Q, Gao A M, Hao J N, et al. Soaking-free and self-healing hydrogel for wearable zinc-ion batteries [J]. Chem. Eng. J., 2023, 452: 139605
|
[59] |
Han C, Li W J, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries [J]. Nano Energy, 2020, 74: 104880
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|