Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 698-708    DOI: 10.11902/1005.4537.2024.174
Current Issue | Archive | Adv Search |
Erosion Characteristics of High-pressure Tee Manifold Under Dynamic Load
GUO Zihan1, FAN Jianchun1(), YANG Yunpeng2, ZHANG Jun3, DAI Siwei1
1.School of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2.Institute of Petroleum Safety and Environmental Protection Technology, China, Beijing 102206, China
3.College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
Cite this article: 

GUO Zihan, FAN Jianchun, YANG Yunpeng, ZHANG Jun, DAI Siwei. Erosion Characteristics of High-pressure Tee Manifold Under Dynamic Load. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 698-708.

Download:  HTML  PDF(8646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

T-pipe is a common component in high-pressure manifolds, which are in high-pressure environments while subjected to solid particles erosion for a long term, which subsequently affects the safe operation of the relevant system and the service life of pipelines. Herein, the erosion behavior of the high-pressure tee manifold was assessed via a home-made liquid-solid two-phase erosion test bench, which can apply dynamic load on the tested t-pipe subjected to erosion. A model was proposed for description of erosion under dynamic load, and then coupled with a numerical simulation software, to analyze the erosion performance of tee structures at various spatial angles under different internal pressures, velocities, and particle mass flows. Results show that the maximum erosion rate of different tee structures increases with the increase of internal pressure, exponentially with the increase of flow rate, linearly with the increase of particle mass flow rate, and the greater the tee space angle, the faster the growth rate. When the space angle of the tee structure increases, the maximum erosion rate increases, while the erosion performance does not change with the change of internal pressure, velocity, and particle mass flow rate. The results can provide reference for the safe operation of the high-pressure tee manifold.

Key words:  dynamic load      high-pressure manifold-pipe      tee      erosion model      numerical simulation     
Received:  02 June 2024      32134.14.1005.4537.2024.174
ZTFLH:  TE832  
Fund: National Natural Science Foundation of China(52175208);Natural Science Foundation of Fujian Province(2022J01334);China National Petroleum Corporation Science and Technology Project
Corresponding Authors:  FAN Jianchun, E-mail: fjc666888@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.174     OR     https://www.jcscp.org/EN/Y2025/V45/I3/698

Fig.1  Schematic diagram of the test setup
Fig.2  Shape and dimensions of specimen
Fig.3  Comparison of experimental and model-predicted values of the erosion rate as a function of collision angle (a) and flow velocity (b)
Fig.4  Structures of T-type tee (a) and manifold tee (b)
Fig.5  Grid divisions for T-type (a) and manifold (b) tee pipes
Number of gridMaximum erosion rate / kg·m-2·s-1Error / %
568324.12 × 10-5-
1082453.46 × 10-516.02
1613902.94 × 10-515.03
2143552.52 × 10-514.29
2687162.32 × 10-57.94
3454472.31 × 10-50.43
Table 1  Verification of grid independence
Fig.6  Validation of numerical model validity
Fig.7  Pressure distributions of tee pipes with the angles (α) of 30° (a), 45° (b), 60° (c), 75° (d) and 90° (e)
Fig.8  Velocity distributions of tee pipes with the angles of 30° (a), 45° (b), 60° (c), 75° (d) and 90° (e)
Fig.9  Velocity traces on different cross-sections of tee pipe (x) with different spatial angles (α)
Fig.10  Variation of the maximum erosion rate with tee angle
Fig.11  Distributions of erosion rates of tee pipes with the angles of 30° (a), 45° (b), 60° (c), 75° (d) and 90° (e)
Fig.12  Particle trajectories of tee pipes with the angles of 30° (a), 45° (b), = 60° (c), 75° (d) and 90° (e)
Fig.13  Variation of the maximum erosion rate with internal pressure for tee pipes with different configurations (a) and erosion rates of T-type tee under the internal pressures (p) of 25 MPa (b1), 50 MPa (b2), 75 MPa (b3), 100 MPa (b4) and 125 MPa (b5)
Fig.14  Variations of the maximum erosion rate with flow rate (a) and distributions of erosion rate at different flow rates (b) for different tee configurations
Fig.15  Variations of maximum erosion rate with particle mass flow rate (a) and distributions of the erosion rate at different particle mass flow rates (b) for different tee configurations
[1] Hun L, Yang B, Song X X, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance [J]. J. Hydrol., 2021, 601: 126590
[2] Zhang H, Cheng Y P, Deng C B, et al. A novel in-seam borehole discontinuous hydraulic flushing technology in the driving face of soft coal seams: enhanced gas extraction mechanism and field application [J]. Rock Mech. Rock Eng., 2022, 55: 885
[3] Moridis G J, Anantraksakul N, Blasingame T A. Transformational-decomposition-method-based semianalytical solutions of the 3D problem of oil production from shale reservoirs [J]. SPE J., 2021, 26: 780
doi: 10.2118/199083-PA
[4] Hong B Y, Li Y B, Li Y, et al. Numerical simulation of solid particle erosion in the gas-liquid flow of key pipe fittings in shale gas fields [J]. Case Stud. Therm. Eng., 2023, 42: 102742
[5] Li H Z, Huang B X, Zhao X L, et al. Effects of fluid and proppant properties on proppant transport and distribution in horizontal hydraulic fractures of coal under true-triaxial stresses [J]. J. Nat. Gas Sci. Eng., 2022, 108: 104795
[6] Jin X M, Zhang X L, Liao H, et al. Analysis of high pressure pipe sink failure and bursting during sand fracturing process [J]. Saf. Secur., 2017, 38(1): 17
金雪梅, 张祥来, 廖 浩 等. 加砂压裂过程中高压管汇失效爆裂分析 [J]. 安全, 2017, 38(1): 17
[7] Zhu X H, Zhang Q, Zhang Y M, et al. Study on erosion wear characteristics of high pressure manifold tee [J]. Surf. Technol., 2021, 50(7): 258
祝效华, 张 覃, 张洋铭 等. 高压管汇三通冲蚀磨损特性研究 [J]. 表面技术, 2021, 50(7): 258
[8] Shan Y T, Jing J Q, Zhang Z Y, et al. Investigation of erosion behavior of particle-fluid flow in offshore platform T-pipes [J]. Int. J. Press. Vessels Pip., 2024, 209: 105174
[9] Zhang J, Zhang H, Liu Y, et al. Erosion wear characteristics of tee tubes with gas-solid two-phase flow [J]. J. Pressure Vessel Technol., 2021, 143: 064502
[10] Khan R, Petru J, Seikh A H. Erosion prediction due to micron-sized particles in the multiphase flow of T and Y pipes of oil and gas fields [J]. Int. J. Press. Vessels Pip., 2023, 206: 105041
[11] Huang H B, Qian Y B, Guo X T, et al. Numerical simulation of high pressure pipe sink erosion and wear based on DDPM model [J]. Sci. Technol. Eng., 2023, 23: 11195
黄华宝, 钱玉宝, 郭旭涛 等. 基于DDPM模型的高压管汇冲蚀磨损数值模拟 [J]. 科学技术与工程, 2023, 23: 11195
[12] Wang H K, Yu Y, Yu J X, et al. Numerical simulation of the erosion of pipe bends considering fluid-induced stress and surface scar evolution [J]. Wear, 2019, 440-441: 203043
[13] Yang S Q, Fan J C, Zhang L B, et al. Performance prediction of erosion in elbows for slurry flow under high internal pressure [J]. Tribol. Int., 2021, 157: 106879
[14] Dai S W, Fan J C, Li J, et al. Study on the erosion performance of high-pressure double elbow based on experiment and numerical simulation [J]. Tribol. Int., 2023, 187: 108671
[15] Li J, Fan J C, Yang S Q, et al. Quantitative study on magnetic memory detection in dynamic load erosion process of high-pressure manifold [J]. China Pet. Mach., 2023, 51(8): 132
李 杰, 樊建春, 杨思齐 等. 高压管汇动载冲蚀过程磁记忆检测定量研究 [J]. 石油机械, 2023, 51(8): 132
[16] Ahlert K R. Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 steel [D]. Tulsa: University of Tulsa, 1994
[17] Wang H K, Yu Y, Yu J X, et al. Development of erosion equation and numerical simulation methods with the consideration of applied stress [J]. Tribol. Int., 2019, 137: 387
[18] Lin N, Lan H Q, Xu Y G, et al. Effect of the gas–solid two-phase flow velocity on elbow erosion [J]. J. Nat. Gas Sci. Eng., 2015, 26: 581
[19] Peng W S, Cao X W. Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow [J]. Powder Technol., 2016, 294: 266
[20] Guo Z H, Zhang J, Huang J M, et al. Numerical analysis of erosion resistance of elbow with bionic inner surface structure [J]. Surf. Technol., 2023, 52(5): 90
郭姿含, 张 军, 黄金满 等. 具有仿生内表面结构的弯管抗冲蚀特性数值分析 [J]. 表面技术, 2023, 52(5): 90
[21] Guo Z H, Zhang J, Li H. Optimal design for anti-erosion of pneumatic conveying elbow with rib structure [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 525
郭姿含, 张 军, 李 晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计 [J]. 中国腐蚀与防护学报, 2023, 43: 525
doi: 10.11902/1005.4537.2022.231
[22] Guo Z H, Zhang J, Li H, et al. A comprehensive evaluation of the anti-erosion characteristics of several new structural elbows in the pneumatic conveying system [J]. Powder Technol., 2022, 412: 117976
[23] Zhou F, Qian Y B, Ren Y L, et al. Erosion wear analysis of shale gas fracturing tee manifold [J]. Sci. Technol. Eng., 2023, 23: 2396
周 方, 钱玉宝, 任伊朗 等. 页岩气压裂三通管汇冲蚀磨损分析 [J]. 科学技术与工程, 2023, 23: 2396
[24] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircr., 1975, 12: 471
[1] PENG Liyuan, XIE Jingli, CAO Shengfei, TAN Jibo, WU Xinqiang, ZHANG Ziyu. Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[2] CHEN Lijuan, CHAO Liuwei, ZHAO Jingmao. Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
[3] XIAO Qikun, MA Jun, GUO Kai, XIONG Xin, YUAN Haoran. Numerical Simulation of Erosion Wear in Slurry Pipeline Based on DDPM-RSM[J]. 中国腐蚀与防护学报, 2025, 45(3): 709-719.
[4] WANG Yadong, MA Rongyao, WAN Ye, DONG Junhua. Influence of Hydrostatic Pressure on Corrosion Behavior of Base Metaland Welded Joint of GPa-grade Offshore Engineering Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(3): 653-663.
[5] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[6] SHEN Chen, HUANG Jinyang, ZHANG Xingxing, HU Xinyuan, ZHU Ming, LU Jintao. Research Progress of Carbonization-corrosion and Protection of Alloy Steels[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[7] LIU Jiabing, HUANG Shiyu, GUO Na, GUO Zhangwei, LIU Tao. Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[8] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[9] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[10] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[11] MIAO Hao, YIN Chenghui, WANG Honglun, GAO Yihui, CHEN Junhang, ZHANG Hao, LI Bo, WU Junsheng, XIAO Kui. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[12] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[13] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[14] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[15] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
No Suggested Reading articles found!