Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 416-422    DOI: 10.11902/1005.4537.2024.079
Current Issue | Archive | Adv Search |
Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel
LI Xincheng1, LI Zhaonan1, WANG Haifeng1, XU Yunze1,2(), WANG Mingyu1, ZHEN Xingwei1
1.School of Naval Engineering, Dalian University of Technology, Dalian 116024, China
2.National Key Laboratory of Industrial Equipment Structural Analysis and Optimization and CAE Software, Dalian 116024, China
Cite this article: 

LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 416-422.

Download:  HTML  PDF(14612KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrogen embrittlement sensitivity of different welded structures of DH36 marine engineering steel was comparatively studied via hydrogen diffusion measurement and slow strain rate tests (SSRT). The results show that the hydrogen diffusion coefficient is the highest for the heat-affected zone, followed by the weld zone, and the base metal zone is the lowest. The hydrogen embrittlement coefficient is the highest for the heat-affected zone, and obvious hydrogen embrittlement can be observed in the heat-affected zone by an applied polarization potential of -950 mV, while the base metal and weld zone exhibit hydrogen embrittlement characteristics only when the cathodic protection potential of -1050 mV was applied. The results indicate that the heat-affected zone has higher hydrogen embrittlement sensitivity than the weld zone, however, the weld zone has higher sensitivity than the base metal zone.

Key words:  DH36 steel      hydrogen embrittlement      heat affected zone      hydrogen permeation      slow strain rate tests (SSRT)      cathodic protection     
Received:  11 March 2024      32134.14.1005.4537.2024.079
TG174  
Fund: National Natural Science Foundation of China(52001055)
Corresponding Authors:  XU Yunze, E-mail: xuyunze123@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.079     OR     https://www.jcscp.org/EN/Y2025/V45/I2/416

Fig.1  Microstructures of the base metal (a), heat-affected zone (b) and welding metal (c)
Fig.2  Schematic diagrams of sample shape (a) and sampling areas (b)
Fig.3  Tensile testing device
Fig.4  Schematic diagram of electrochemical hydrogen charging device
Fig.5  Hydrogen permeation curves of the welding metal,heat-affected zone and base metal
ZoneI / mA·cm-2D / cm2·s-1J / mol[H]·cm-2·s-1C0 / mol·cm-3NT
Base metal7.58.33 × 10-67.77 × 10-119.33 × 10-72.69 × 1019
Heat-affected zone10.21.28 × 10-51.06 × 10-108.25 × 10-71.49 × 1019
Welding metal9.11.19 × 10-59.43 × 10-117.92 × 10-71.55 × 1019
Table 1  Hydrogen diffusion parameters of the welding metal, heat-affected zone, and base metal
Fig.6  Stress-strain curves of the base metal (a), welding metal (b) and heat-affected zone (c) at different potentials, and their elongation curves (d)
Fig.7  Macroscopic morphologies of fracture surfaces of the base metal (a), heat-affected zone (b) and welding metal (c) with 0 mV (a1-c1), -850 mV (a2-c2), -950 mV (a3-c3), -1050 mV (a4-c4) and -1150 mV (a5-c5)
Fig.8  Hydrogen embrittlement coefficients of the welding metal, heat-affected zone and base metal
Fig.9  Microscopic morphologies of fracture surfaces of the base metal (a), heat-affected zone (b) and welding metal (c) with 0 mV (a1-c1), -850 mV (a2-c2), -950 mV (a3-c3), -1050 mV (a4-c4) and -1150 mV (a5-c5) after tensile test at different potentials
1 Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform [J]. Equip. Environ. Eng., 2014, 11(2): 50
郝文魁, 刘智勇, 王显宗 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(2): 50
2 Xing S H, Li Y, Ma L, et al. Research progress in cathodic protection technology for marine infrastructures in deep sea environment [J]. Equip. Environ. Eng., 2015, 12(2): 49
邢少华, 李 焰, 马 力 等. 深海工程装备阴极保护技术进展 [J]. 装备环境工程, 2015, 12(2): 49
3 Ministry of Industry and Information Technology of the People's Republic of China. Cathodic protection technical specification [S]. Beijing: Chemical Industry Press, 2009
中华人民共和国工业和信息化部. 阴极保护技术条件 [S]. 北京: 化学工业出版社, 2009
4 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 2
曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 2
5 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 11
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀—基础部分 [M]. 北京: 科学出版社, 2013: 11
6 Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
7 Martínez-Pañeda E, Harris Z D, Fuentes-Alonso S, et al. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility [J]. Corros. Sci., 2020, 163: 108291
8 Tong H S, Sun Y H, Su Y J, et al. Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
童海生, 孙彦辉, 宿彦京 等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
doi: 10.11902/1005.4537.2017.212
9 Zhang T M, Zhao W M, Guo W, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315
张体明, 赵卫民, 郭 望 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2014, 34: 315
doi: 10.11902/1005.4537.2013.109
10 Jiang X D, Cao R K, Yin P F, et al. Hydrogen embrittlement sensitivity of 10Ni5CrMo steel at different temperatures and polarization potentials [J]. Corros. Prot., 2020, 41(7): 55
姜秀丹, 曹荣凯, 尹鹏飞 等. 温度及极化电位对10Ni5CrMo钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2020, 41(7): 55
11 Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
12 Wu Y, Zeng Q, Xiao H J, et al. Hydrogen embrittlement behavior of BS960E high strength steel laser-arc hybrid welded joint [J]. Laser Optoelectron. Prog., 2021, 58(21): 2114014
吴 颖, 曾 强, 肖辉进 等. BS960E高强钢激光-电弧复合焊接头氢脆行为研究 [J]. 激光与光电子学进展, 2021, 58(21): 2114014
13 Wang W L, Chen Y, Zhan X Q, et al. Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints [J]. Surf. Technol., 2024, 53(4): 117
王万里, 陈 烨, 占先强 等. X60、X70管线钢及其焊接接头氢脆敏感性的对比研究 [J]. 表面技术, 2024, 53(4): 117
14 Costa L R O, Lemus L F, Dos Santos D S. Hydrogen embrittlement susceptibility of welded 2¼Cr-1Mo steel under elastic stress [J]. Int. J. Hydrog. Energy, 2015, 40: 17128
15 Yan C Y, Zhou Q W, Zhang H, et al. Investigation of hydrogen-induced cracking susceptibility of X90 pipeline steel welded joints [J]. J. Mech. Eng., 2023, 59(24): 83
严春妍, 周倩雯, 张 浩 等. X90管线钢焊接接头氢致开裂敏感性研究 [J]. 机械工程学报, 2023, 59(24): 83
16 Świerczyńska A, Fydrych D, Landowski M, et al. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection [J]. Constr. Build. Mater., 2020, 238: 117697
17 Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2017, 42: 25102
18 Lin Z Q, Ma L, Yan Y G. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of welding line in high strength hull structural steel [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 46
林召强, 马 力, 闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 46
19 Vecchi L, Pecko D, Mamme M H, et al. Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell [J]. Corros. Sci., 2019, 154: 231
20 Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353
郭 望, 赵卫民, 张体明 等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 353
21 Wang J, Chen K, Zhao W, et al. Study on microstructure and hydrogen permeation behavior of welding heat affected zone of X80 pipeline steel [J]. Welded Pipe Tube, 2022, 45(3): 1
王 佳, 陈 锴, 赵 伟 等. X80管线钢焊接热影响区组织和氢渗透行为研究 [J]. 焊管, 2022, 45(3): 1
22 Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
doi: 10.3724/SP.J.1037.2013.00271
刘 玉, 李 焰, 李 强. 阴极极化对管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089
23 Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
24 Nguyen T T, Tak N, Park J, et al. Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment [J]. Int. J. Hydrog. Energy, 2020, 45: 23739
[1] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] BAI Yunlong, LENG Bing, WEI Boxin, DONG Lijin, YU Changkun, XU Jin, SUN Cheng. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[4] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[5] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[6] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[7] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[8] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[9] ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[10] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[11] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[12] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[13] YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[14] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[15] LIU Guo. Discussion on DC Voltage Gradient (DCVG) Measurement and %IR Calculation of Buried Coating Pipeline[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
No Suggested Reading articles found!