Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 687-697    DOI: 10.11902/1005.4537.2024.080
Current Issue | Archive | Adv Search |
Copper Electroplating Process and Performance of HEDP-potassium Pyrophosphate System on Sintered NdFeB Surface
WANG Kang1,2, JIANG Jianjun2, YANG Lijing2, SONG Zhenlun2()
1.Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
2.Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

WANG Kang, JIANG Jianjun, YANG Lijing, SONG Zhenlun. Copper Electroplating Process and Performance of HEDP-potassium Pyrophosphate System on Sintered NdFeB Surface. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 687-697.

Download:  HTML  PDF(24678KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu electroplating on sintered NdFeB was conducted with hydroxyethylidene diphosphonic acid (HEDP) as a cyanide-free alkaline plating electrolyte and potassium pyrophosphate as an auxiliary complexing agent. Meanwhile, the plating process was optimized through cyclic voltammetry (CV), cathodic current efficiency, Hall tank experiments, scanning electron microscopy (SEM) and other means; then the plated coatings were characterized by means of SEM and scratch test etc., and their corrosion resistance was assessed by salt spray test. The results showed that the coatings with smooth surface, defect free and good adhesion to the NdFeB substrate may be acquired with an electrolyte composed of CuSO4·5H2O 22.5 g·L-1, HEDP 60 g·L-1, K4P2O7 40 g·L-1 and K2SO4 10 g·L-1 of pH = 10, at 50 ℃, by stirring rate of 200 r·min-1, and current density of 0.6 A·dm-2. The corrosion resistance of the Cu-plating is close to that of conventional Ni-Cu-Ni plating; Besides, the surface magnetic and magnetic flux results show that the magnetic shielding effect of direct Cu plating on NdFeB surface is smaller than that of Ni-Cu-Ni plating.

Key words:  electroplated Cu      cyanide-free alkaline      HEDP      cathode current efficiency      binding force      table magnetic     
Received:  13 March 2024      32134.14.1005.4537.2024.080
ZTFLH:  TG174  
Fund: National Key Research and Development Program(2021YFB3502900)
Corresponding Authors:  SONG Zhenlun, E-mail: songzhenlun@nimte.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.080     OR     https://www.jcscp.org/EN/Y2025/V45/I3/687

Ingredient and conditionRange
CuSO4·5H2O15-40 g·L-1
HEDP50-80 g·L-1
K₄P₂O₇10-60 g·L-1
K2SO410 g·L-1
pH8-11
Current density0.3-1.5 A·dm-2
Temperature30-60 ℃
Stirring rate200 r·min-1
Table 1  Bath composition and experimental conditions for copper plating
Ingredient and conditionVariable 1Variable 2Variable 3Variable 4Variable 5Variable 6Variable7
CuSO4·5H2O / g·L-1152022.525303540
HEDP / g·L-150607080---
K4P2O7 / g·L-110204060---
Current density / A·dm-20.30.60.91.21.5--
pH891011---
Temperature / ℃30405060---
Table 2  Subjects and conditions of single variable experiment
Fig.1  Schematic diagram of appearance of Hull cell specimen after plating
Fig.2  Cyclic voltammetry curves in alkaline Cu plating solutions containing different concentrations of CuSO4
Fig.3  Titration curves of the baths containing different concentrations of CuSO4 (a) and solution states during titration (b)
Fig.4  Effects of the contents of CuSO4 (a), HEDP (b) and potassium pyrophosphate (c) on cathode current efficiency
Fig.5  SEM surface morphologies of the coatings deposited in the baths containing 50 g·L-1 (a1), 60 g·L-1 (a2), 70 g·L-1 (a3), 80 g·L-1 (a4) HEDP and 10 g·L-1 (b1), 20 g·L-1 (b2), 40 g·L-1 (b3),60 g·L-1 (b4) potassium pyrophosphate
Fig.6  Standard strips of Hull cell cathode specimen
Fig.7  Visualizations of the surface of Hull cell specimen under different conditions of heating temperature (a) and pH values (b)
Fig.8  SEM surface morphologies of the coatings deposited at different current densities: (a) 0.6 A·dm-2, (b) 0.9 A·dm-2, (c) 1.2 A·dm-2, (d) 1.5 A·dm-2
Fig.9  Cross-sectional profiles and 3D morphologies of the coatings plated at different current densities: (a) 0.6 A·dm-2, (b) 0.9 A·dm-2, (c) 1.2 A·dm-2, (d) 1.5 A·dm-2
Fig.10  SEM morphologies of the coatings deposited in the plating solutions containing the auxiliary complexing agents of potassium citrate (a), potassium sodium tartrate (b), TEA (c) and EDTA (d)
Fig.11  Cross-sectional morphologies of the coatings plated in the plating solutions containing the complexing agents of potassium citrate (a) and potassium sodium tartrate (b)
Fig.12  Cross-sectional morphology of pure Cu plating
Fig.13  Scratch tests of Cu plating before (a) and after (b) adhesive tape stripping
Fig.14  Macroscopic morphologies of Cu-Ni (a1-d1), Ni-Cu-Ni (a2-d2), and Cu-Ni-Chemical Ni (a3-d3) plated coatings after NSS tests for 0 h (a1-a3), 24 h (b1-b3), 48 h (c1-c3), and 72 h (d1-d3)
Fig.15  Surface magnetic induction intensities and magnetic fluxes of NdFeB specimens with different plated coatings
[1] Wang F, Chen X P, Qiu P, et al. Corrosion resistance of electroplating of Cu-Ni/P coatings on NdFeB magnet materials [J]. Int. J. Electrochem. Sci., 2020, 15: 10476
[2] Sun S, Yang J, Qian X Z, et al. Preparation and electrochemical corrosion behavior of electroless plated Ni-Cr-P alloy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 273
孙 硕, 杨 杰, 钱薪竹 等. Ni-Cr-P化学镀层的制备与电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 273
[3] Yin T T, Wu R Z, Leng Z, et al. The process of electroplating with Cu on the surface of Mg-Li alloy [J]. Surf. Coat.Technol., 2013, 225: 119
[4] Zheng J W, Chen H B, Qiao L, et al. Double coating protection of Nd-Fe-B magnets: intergranular phosphating treatment and copper plating [J]. J. Magn. Magn. Mater., 2014, 371: 1
[5] Li M G, Wei G Y, Li M, et al. Effect of HEDP on copper electroplating from non-cyanide alkaline baths [J]. Surf. Eng., 2014, 30: 728
[6] Zhang J, Liu A M, Ren X F, et al. Electrodeposit copper from alkaline cyanide-free baths containing 5,5′-Dimethylhydantoin and citrate as complexing agents [J]. RSC Adv., 2014, 4: 38012
[7] Zhang H, Song Y W, Song Z L. Electrodeposited nickel/alumina composite coating on NdFeB permanent magnets [J]. Mater. Corros., 2008, 59: 324
[8] Ma C B, Cao F H, Zhang Z, et al. Electrodeposition of amorphous Ni-P coatings onto Nd-Fe-B permanent magnet substrates [J]. Appl. Surf. Sci., 2006, 253: 2251
[9] Ibrahim M A M, Bakdash R S. New non-cyanide acidic copper electroplating bath based on glutamate complexing agent [J]. Surf. Coat. Technol., 2015, 282: 139
[10] Chen H B, Zheng J W, Fu Y C, et al. Preparation and characterization of copper-graphene composite films on sintered NdFeB surface [J]. Rare. Met. Mater. Eng., 2021, 50: 4306
陈海波, 郑精武, 付永成 等. 烧结NdFeB表面铜-石墨烯复合膜的制备与表征 [J]. 稀有金属材料与工程, 2021, 50: 4306
[11] Li Y, Zhu L Q, Li W P, et al. Electrodeposition and properties of copper layer on NdFeB device [J]. J. Mater. Eng., 2017, 45(6): 55
doi: 10.11868/j.issn.1001-4381.2015.001426
李 悦, 朱立群, 李卫平 等. 钕铁硼器件表面电沉积铜层及性能 [J]. 材料工程, 2017, 45(6): 55
[12] Fabbri L, Giurlani W, Mencherini G, et al. Optimisation of thiourea concentration in a decorative copper plating acid bath based on methanesulfonic electrolyte [J]. Coatings, 2022, 12: 376
[13] Zheng J W, Chen H B, Cai W, et al. Reaction mechanisms of copper electrodeposition from 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP) solution on glassy carbon [J]. Mater. Sci. Eng., 2017, 224B: 18
[14] Ramírez C, Bozzini B, Calderón J A. Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution [J]. Electrochim. Acta., 2022, 425: 140654
[15] Jiang J, Jiang J J, Yang L J, et al. Preparation and corrosion resistance of Zn-Al coating on sintered NdFeB permanent magnet [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 104
江 杰, 姜建军, 杨丽景 等. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 104
[16] Zhuang C, Ling G P. Electrodeposition of copper on NdFeB in CuCl-EMIC ionic liquid [J]. Surf. Technol. 2019, 48: 260
[17] Chen H M, Wang S X, Zhang Q, et al. Electrodeposition behavior of silver in an alkaline DMH plating bath with 5,5-Dimethylhydantoin as complexing agent [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 896
陈惠敏, 王帅星, 张 骐 等. 5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 896
doi: 10.11902/1005.4537.2022.262
[18] Zheng J W, Wang S Y, Zhang S, et al. A novel self-repairing hydrophobic composite coating for anti-corrosion protection of sintered Nd-Fe-B [J]. J. Mater. Res. Technol., 2023, 22: 3020
[1] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
No Suggested Reading articles found!