Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 449-459    DOI: 10.11902/1005.4537.2024.098
Current Issue | Archive | Adv Search |
Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area
MIAO Hao1, YIN Chenghui1, WANG Honglun2, GAO Yihui3, CHEN Junhang1, ZHANG Hao1, LI Bo1, WU Junsheng1, XIAO Kui1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory of Space Launch Site Reliability Technology, Xichang Satellite Launch Center, Haikou 571126, China
3.Twentieth Research Institute of China Electronics Technology Corporation, Xi'an 710068, China
Cite this article: 

MIAO Hao, YIN Chenghui, WANG Honglun, GAO Yihui, CHEN Junhang, ZHANG Hao, LI Bo, WU Junsheng, XIAO Kui. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 449-459.

Download:  HTML  PDF(20103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to the acquired environmental factors of polluted Marine atmosphere at Qingdao coastal area, an environment spectrum composed of varying ultraviolet irradiation and weekly soaking was designed for laboratory accelerated test. Thereafter, the corrosion behavior of three stainless steels, 430, 316L and 2205 was studied in parallel via lab testing with the proposed spectrum, and further, the correlation of the acquired data was evaluated with the outdoor exposure test results at selected sites in polluted Marine atmospheric environment of Qingdao area. The tested steels were characterized by means of weightlessness method, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), corrosion electrochemistry etc. The results show that after 480 h test of UV irradiation + weekly shocking, 430 stainless steel underwent obvious corrosion, 316L stainless steel showed obvious pitting corrosion, and 2205 stainless steel experienced no obvious corrosion. However, the gray correlation analysis reveals that the laboratory corrosion data for the three stainless steels 430, 316L and 2205 and showed relatively good correlation with those of outdoor exposure test. Accordingly, the following three formulas may be proposed: T430 = 50.0114t 0.134351, T316L = 66.32242t 0.52341 and T2205 = 620.8745t 0.112522, as the corrosion-life prediction model for the corrosion of three stainless steels 430, 316L and 2205 in Qingdao polluted Marine atmospheric environment respectively.

Key words:  stainless steel      environmental spectrum evaluation      pollution of the ocean atmospheric environment      correlation      corrosion life     
Received:  27 March 2024      32134.14.1005.4537.2024.098
TG172.3  
Fund: National Key R&D Program of China(2017YFB0304602)
Corresponding Authors:  XIAO Kui, E-mail: xiaokui@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.098     OR     https://www.jcscp.org/EN/Y2025/V45/I2/449

MaterialCSiMnSPNiCrMoV
4300.050.240.20.0180.0250.0716.14-0.1
316L0.030.441.460.0160.02710.1116.842.19-
22050.040.541.560.0150.0416.0322.123.41-
Table 1  Chemical composition of 430, 316L and 2205 stainless steels
Fig.1  Test methods for simulating industrial marine environments
Fig.2  Mass loss and fitting curves for 430, 316L and 2205 stainless steels after accelerated indoor testing
SampleAnR2
4300.039980.952950.99713
316L0.020550.792190.98433
22050.027840.485860.97145
Table 2  Fitting results of 430, 316L and 2205 stainless steels after accelerated indoor testing
Fig.3  Mass loss rate curves for 430, 316L and 2205 stainless steels after accelerated indoor testing
Fig.4  Surface morphologies of 430 stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.5  SEM images of 430 stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.6  Surface morphologies of 316L stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.7  SEM images of 316L stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.8  Surface morphologies of 2205 stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.9  SEM images of 2205 stainless steel after corrosion for 107 h (a), 214 h (b), 321 h (c) and 428 h (d)
Fig.10  Fe 2p fractional peak fitting spectra of corrosion products of 430 (a, b), 316L (c, d) and 2205 (e, f) stainless steels after corrosion for 428 h
Fig.11  Polarization curves of 430 (a), 316L (b) and 2205 (c) stainless steels after corrosion for different time
MaterialTest time / hEcorr / mVIcorr / nA·cm-2
430107-489.421053.80
214-320.72309.34
321-190.0655.14
428-220.8282.78
316L107-49.75112.21
214-72.71104.07
321-186.53118.60
428-199.6271.19
2205107-114.06237.95
214-161.13100.26
321-221.0247.26
428-186.2565.60
Table 3  Fitting results of polarization curves of 430, 316L and 2205 stainless steels
Test time / hOutdoor exposure mass loss / g·m-2Indoor accelerated mass loss / g·m-2
X430X316LX2205X430X316LX2205
107 (1)1.66330.57010.63343.33080.78720.281
214 (2)1.81770.75990.65796.56011.55090.3735
321 (3)1.91450.89900.672610.09471.88910.4355
428 (4)1.98631.01290.683314.69882.52770.5469
Table 4  Mass loss data from outdoor exposure and UV + weekly immersion tests for three materials
Test time / hOutdoor exposure mass lossIndoor accelerated mass loss
Y430Y316LY2205Y430Y316LY2205
107 (1)1.00001.00001.00001.00001.00001.0000
214 (2)1.09281.33301.03861.96951.97011.3290
321 (3)1.15101.57701.06193.03072.39981.5496
428 (4)1.19421.77681.07874.41293.21101.9460
Table 5  Initial treatment results of outdoor exposure and UV + weekly immersion tests data of three materials
Test time / h430316L2205
107 (1)000
214 (2)0.87670.63720.2903
321 (3)1.87960.82280.4877
428 (4)3.21871.43420.8673
Table 6  Absolute difference sequence of three materials
1 Chen H. Research on corrosion behavior of stainless steel in marine atmospheric [D]. Beijing: China Academy of Machinery Science and Technology, 2021
陈 昊. 不锈钢在海洋大气环境中的腐蚀行为研究 [D]. 北京: 机械科学研究总院, 2021
2 Ma H C, Liu Z Y, Du C W, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere [J]. J. Mech. Eng., 2016, 52(16): 33
马宏驰, 刘智勇, 杜翠薇 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响 [J]. 机械工程学报, 2016, 52(16): 33
doi: 10.3901/JME.2016.16.033
3 Zhang D J, Cheng C Q, Yang H, et al. Effect of passivation film integrity on marine atmospheric corrosion of stainless steel and its quality inspection methods [J]. Corros. Prot., 2023, 44(5): 46
张东玖, 程从前, 杨 华 等. 钝化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法 [J]. 腐蚀与防护, 2023, 44(5): 46
4 Song J L, Jiang Z X, Yi P, et al. Corrosion behavior and product evolution of steel for high-speed railway bogie G390NH in simulated marine and industrial atmospheric environment [J]. Acta Metall. Sin., 2023, 59: 1487
doi: 10.11900/0412.1961.2021.00366
宋嘉良, 江紫雪, 易 盼 等. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律 [J]. 金属学报, 2023, 59: 1487
doi: 10.11900/0412.1961.2021.00366
5 Gümpel P, Hörtnagl A. Influence of the surface condition on corrosion behavior of stainless steel [J]. Mater. Corros., 2016, 67: 607
6 Guo M X, Tang J R, Pan C, et al. The effect of temperature and UV irradiation on corrosion behavior of 304 stainless steel exposed to a simulated marine atmosphere [J]. Mater. Corros., 2022, 73: 876
7 Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part Ⅱ-Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
8 Yin C H, Pan J L, Chen J H, et al. Corrosion life assessment of stainless steel in tropical marine atmosphere [J]. Surf. Technol., 2022, 51(4): 183
尹程辉, 潘吉林, 陈俊航 等. 热带海洋大气环境下不锈钢的腐蚀寿命评估 [J]. 表面技术, 2022, 51(4): 183
9 Fujimoto S, Yamada T, Shibata T. Improvement of pitting corrosion resistance of type 304 stainless steel by modification of passive film with ultraviolet light irradiation [J]. J. Electrochem. Soc., 1998, 145: L79
10 Moussa S O, Hocking M G. The photo-inhibition of localized corrosion of 304 stainless steel in sodium chloride environment [J]. Corros. Sci., 2001, 43: 2037
11 MacDonald D D, Heaney D F. Effect of variable intensity ultraviolet radiation on passivity breakdown of AISI Type 304 stainless steel [J]. Corros. Sci., 2000, 42: 1779
12 Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 249
林 翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2004, 24(4): 249
13 Bao Z B, Wang Q M, Jiang S M, et al. Influence of salt spray corrosion on subsequent isothermal oxidation behaviours of AIP NiCoCrAlYSiB coatings [J]. Corros. Sci., 2008, 50: 2372
14 Chen J W, Liu J, Wang H B, et al. Experimental study on neutral salt spray accelerated corrosion of metal protective coatings for power-transmission and transformation equipment [J]. Coatings, 2023, 13: 480
15 Ren J H, Chen A Z, Gao R Q, et al. Analysis of corrosion resistance of 445J2 ferrite stainless steel [J]. Phys. Exam. Test., 2023, 41(2): 11
任娟红, 陈安忠, 高仁强 等. 445J2铁素体不锈钢的耐蚀性分析 [J]. 物理测试, 2023, 41(2): 11
16 Chen J H, Bai Z H, Xue W, et al. Corrosion life prediction model of 304 stainless steel in Qingdao polluted marine atmospheric environment [J]. Mater. Prot., 2019, 52(12): 48
陈俊航, 白子恒, 薛 伟 等. 304不锈钢在青岛污染海洋大气环境中的腐蚀寿命预测模型 [J]. 材料保护, 2019, 52(12): 48
17 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
18 Guo M X, Lu X, Tang J R, et al. Corrosion behavior of 316 stainless steel exposed to a simulated salt lake atmospheric environment under UV illumination [J]. Int. J. Electrochem. Sci., 2021, 16: 210457
19 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
20 Chang M, Jia J W, Huang C S, et al. An effectiveness analysis for the multi-factor accelerated test of a copper-free self-polishing antifouling coating [J]. Coatings, 2023, 13: 1685
21 Zhao Y T, Ding H L, Qiu K N, et al. Research progress on influencing factors and test methods of atmospheric corrosion of metals [J]. J. Shanghai Univ. Electr. Power, 2022, 38: 527
赵悦彤, 丁红蕾, 邱凯娜 等. 金属大气腐蚀影响因素及实验方法研究综述 [J]. 上海电力大学学报, 2022, 38: 527
22 Liu S G, Cao G, Zheng P H. Study on the corrosion behavior of austenitic stainless steel piping in ships with TIG automatic welding [J]. Mater. Prot., 2024, 57(1): 196
刘水根, 操 戈, 郑鹏华. 船舶奥氏体不锈钢管TIG自动焊腐蚀行为研究 [J]. 材料保护, 2024, 57(1): 196
23 Mu X L, Tian Y E, Wang X H. The relativity of the simulated accelerated test of carbon steel and low alloy steel and atmospheric corrosion test [J]. Environ. Technol., 2001, 19(4): 14
牟献良, 田月娥, 汪学华. 碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性 [J]. 环境技术, 2001, 19(4): 14
24 Ding D D, Feng Y, Huang X C, et al. Correlativity on indoor accelerated corrosion and atmospheric exposure of 430 stainless steel [J]. Surf. Technol., 2016, 45(7): 56
丁冬冬, 凤 仪, 黄晓晨 等. 430不锈钢室内加速腐蚀与大气暴露的相关性研究 [J]. 表面技术, 2016, 45(7): 56
25 Dong C F, Luo H, Xiao K, et al. Evaluation of corrosion behaviour of 316L stainless steel exposed in marine atmosphere of Xisha islands [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2012, 44(3): 179
董超芳, 骆 鸿, 肖 葵 等. 316L不锈钢在西沙海洋大气环境下的腐蚀行为评估 [J]. 四川大学学报(工程科学版), 2012, 44(3): 179
26 Du J, Yu M Y, Liu P L, et al. Corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution for oil and gas wells at 200 oC [J]. Anti-Corros. Methods Mater., 2022, 69: 149
27 Yao Q, Chen J H, Song Y H, et al. Corrosion failure of stainless steel bellows in marine atmosphere [J]. Equip. Environ. Eng., 2020, 17(12): 86
姚 琼, 陈俊航, 宋玉红 等. 不锈钢波纹管在海洋大气环境下的腐蚀失效分析 [J]. 装备环境工程, 2020, 17(12): 86
28 Li X G, Dong C F, Xiao K, et al. Initial Behavior and Mechanism of Atmospheric Corrosion of Metals [M]. Beijing: Science Press, 2009
李晓刚, 董超芳, 肖 葵 等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
29 Arunnellaiappan T, Krishna L R, Anoop S, et al. Fabrication of multifunctional black PEO coatings on AA7075 for spacecraft applications [J]. Surf. Coat. Technol., 2016, 307: 735
30 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
胡玉婷, 董鹏飞, 蒋 立 等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
doi: 10.11902/1005.4537.2018.183
31 Jiang Q T, Yang L H, Lu D Z, et al. The galvanic corrosion of high-strength AZ80 Mg alloys in typical marine environment [J]. Oceanol. Limnol. Sin., 2020, 51: 899
蒋全通, 杨黎晖, 路东柱 等. 典型海洋大气环境中AZ80镁合金电偶腐蚀行为研究 [J]. 海洋与湖沼, 2020, 51: 899
32 Li H R. Study on corrosion rate prediction method of oil and gas pipeline [D]. Jingzhou: Yangtze University, 2021
李昊燃. 油气管道腐蚀速率预测方法研究 [D]. 荆州: 长江大学, 2021
33 Evans U R, King C V. The corrosion and oxidation of metals [J]. J. Electrochem. Soc., 1961, 108: 94C
34 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
doi: 10.11902/1005.4537.2020.039
[1] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[2] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[3] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[4] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[5] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[6] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[7] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[8] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[9] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[10] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[11] YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[12] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[13] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[14] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[15] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
No Suggested Reading articles found!