|
|
Hydrogen Enhanced Localized Plasticity: A Critical Review |
ZHANG Qianru, SUN Qingqing( ) |
School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
|
Cite this article:
ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 271-282.
|
Abstract The key of understanding hydrogen embrittlement mechanism of metals is to fully elucidate the interaction between hydrogen and dislocation. This paper introduces the history, content and development of the theory of hydrogen enhanced localized plasticity (HELP) and reviews it critically. The unsettling questions regard HELP mechanism are emphasized and addressed. In order to answer the unsettling questions, a new research methodology to reveal the interaction between hydrogen and dislocation is presented and prospected.
|
Received: 14 June 2024
32134.14.1005.4537.2024.184
|
|
Fund: National Natural Science Foundation of China(52101115) |
Corresponding Authors:
SUN Qingqing, E-mail: sunqq7@mail.sysu.edu.cn
|
1 |
Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
|
|
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
|
2 |
Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
|
李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
3 |
Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
|
兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
4 |
Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9(1): 3386
doi: 10.1038/s41467-018-05549-y
pmid: 30140001
|
5 |
Luo H, Lu W J, Fang X F, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy [J]. Mater. Today, 2018, 21: 1003
|
6 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
|
|
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
7 |
Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
|
|
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
|
8 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
|
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
9 |
Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
|
|
马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
|
10 |
Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
|
|
王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
|
11 |
Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
|
12 |
Tetelman A S, Robertson W D. Direct observation and analysis of crack propagation in iron-3% silicon single crystals [J]. Acta Metall., 1963, 11: 415
|
13 |
Oriani R A. Whitney award lecture—1987: hydrogen—the versatile embrittler [J]. Corrosion, 1987, 43: 390
|
14 |
Westlake D G. The habit planes of zirconium hydride in zirconium and zircaloy [J]. J. Nucl. Mater., 1968, 26: 208
|
15 |
Birnbaum H K. Mechanical properties of metal hydrides [J]. J. Less Common Met., 1984, 104: 31
|
16 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
|
17 |
Wen M, Zhang L, An B, et al. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel [J]. Phys. Rev., 2009, 80B: 094113
|
18 |
Xie D G, Wan L, Shan Z W. Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal [J]. Corros. Sci., 2021, 183: 109307
|
19 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
20 |
Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: in situ TEM studies [J]. Acta Metall., 1988, 36: 111
|
21 |
Rozenak P, Robertson I M, Birnbaum H K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel [J]. Acta Metall. Mater., 1990, 38: 2031
|
22 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
|
23 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the character of dislocations in high-purity aluminum [J]. Acta Mater., 1999, 47: 2991
|
24 |
Tabata T, Birnbaum H K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron [J]. Scr. Metall., 1983, 17: 947
|
25 |
Robertson I M, Birnbaum H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel [J]. Acta Metall., 1986, 34: 353
|
26 |
Robertson I M. The effect of hydrogen on dislocation dynamics [J]. Eng. Fract. Mech., 2001, 68: 671
|
27 |
Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
|
28 |
Wang S, Martin M L, Sofronis P, et al. Hydrogen-induced intergranular failure of iron [J]. Acta Mater., 2014, 69: 275
|
29 |
Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of β-titanium [J]. Acta Mater., 2001, 49: 4313
|
30 |
Li Z J, Chu W Y, Gao K W, et al. Three-dimensional molecular dynamics simulation of hydrogen-enhanced dislocation emission and crack propagation [J]. Prog. Nat. Sci., 2002, 12: 1001
|
|
李忠吉, 褚武扬, 高克玮 等. 氢促进位错发射和裂纹扩展的三维分子动力学模拟 [J]. 自然科学进展, 2002, 12: 1001
|
31 |
Jiang X G, Chu W Y, Xiao J M. Mechanism of hydrogen-facilitated nucleation of cleavage crack [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 54
|
|
蒋兴钢, 褚武扬, 肖纪美. 氢促进解理裂纹形核的机制 [J]. 中国腐蚀与防护学报, 1995, 15: 54
|
32 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
|
33 |
Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
|
34 |
Wilcox B A, Smith G C. The Portevin-Le Chatelier effect in hydrogen charged nickel [J]. Acta Metall., 1964, 12: 371
|
35 |
McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
|
36 |
Robertson I M, Birnbaum H K. Effect of hydrogen on the dislocation structure of deformed nickel [J]. Scr. Metall., 1984, 18: 269
|
37 |
Wang S, Nagao A, Edalati K, et al. Influence of hydrogen on dislocation self-organization in Ni [J]. Acta Mater., 2017, 135: 96
|
38 |
Harris Z D, Lawrence S K, Medlin D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel [J]. Acta Mater., 2018, 158: 180
|
39 |
Wang S, Nagao A, Sofronis P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel [J]. Acta Mater., 2018, 144: 164
|
40 |
Ogawa Y, Birenis D, Matsunaga H, et al. Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron [J]. Scr. Mater., 2017, 140: 13
|
41 |
Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
|
42 |
Nygren K E, Nagao A, Wang S, et al. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel [J]. Acta Mater., 2021, 213: 116957
|
43 |
Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, 736A: 156
|
44 |
Nygren K E, Wang S, Bertsch K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy [J]. Acta Mater., 2018, 157: 218
|
45 |
Bertsch K M, Wang S, Nagao A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni [J]. Mater. Sci. Eng., 2019, 760A: 58
|
46 |
Yi J, Zhuang X Q, He J, et al. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy [J]. Corros. Sci., 2021, 189: 109628
|
47 |
Fu Z H, Wu P F, Zhu S Y, et al. Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys [J]. Corros. Sci., 2022, 194: 109933
|
48 |
Cheng H X, Luo H, Pan Z M, et al. Hydrogen embrittlement of a precipitation-strengthened high-entropy alloy [J]. Corros. Sci., 2024, 227: 111708
|
49 |
Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure and flow stress [J]. Mater. Sci. Eng., 2008, 494A: 61
|
50 |
Winther G, Huang X. Dislocation structures. Part II. Slip system dependence [J]. Philos. Mag., 2007, 87: 5215
|
51 |
Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence [J]. Philos. Mag., 2007, 87: 5189
|
52 |
Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns [J]. Philos. Mag., 2006, 86: 3981
|
53 |
Hansen N, Huang X, Hughes D A. Microstructural evolution and hardening parameters [J]. Mater. Sci. Eng., 2001, 317A: 3
|
54 |
Huang X. Grain orientation effect on microstructure in tensile strained copper [J]. Scr. Mater., 1998, 38: 1697
|
55 |
Huang X, Hansen N. Grain orientation dependence of microstructure in aluminium deformed in tension [J]. Scr. Mater., 1997, 37: 1
|
56 |
Hughes D A, Hansen N. The microstructural origin of work hardening stages [J]. Acta Mater., 2018, 148: 374
|
57 |
Hansen N, Mehl R F, Medalist A. New discoveries in deformed metals [J]. Metall. Mater. Trans., 2001, 32A: 2917
|
58 |
Wang S, Wang M P, Chen C, et al. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum [J]. Mater. Charact., 2014, 91: 10
|
59 |
Li P, Li S X, Wang Z G, et al. Formation mechanisms of cyclic saturation dislocation patterns in [001], [011] and [ 1 ¯ 11] copper single crystals [J]. Acta Mater., 2010, 58: 3281
|
60 |
Sun Q Q, Chen J B, Cao F H. Orientation dependence of dislocation structure in surface grain of pure aluminium deformed in tension [J]. Mater. Charact., 2022, 193: 112298
|
61 |
Sun Q Q, Ni Y, Wang S. Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension [J]. Acta Mater., 2021, 203: 116474.
|
62 |
Sun Q Q, He J, Nagao A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni [J]. Acta Mater., 2023, 246: 118660.
|
63 |
Li H B, Zheng Z L, He J, et al. Dislocation evolution in copper in the absence and presence of hydrogen [J]. Mater. Sci. Eng., 2022, 842A: 143082
|
64 |
Sun Q Q, Zhang H Z, Li H B, et al. Influence of near-surface dislocation cellular structure on Bauschinger effect [J]. J. Mater. Res. Technol., 2021, 13: 2012
|
65 |
Sun Q Q, Li H B, Wang S. Lattice rotation effect on the dislocation pattern of Cu deformed in tension [J]. Philos. Mag., 2022, 102: 875
|
66 |
Ghermaoui I M A, Oudriss A, Metsue A, et al. Multiscale analysis of hydrogen-induced softening in f.c.c. nickel single crystals oriented for multiple-slips: elastic screening effect [J]. Sci. Rep., 2019, 9: 13042
doi: 10.1038/s41598-019-49420-6
pmid: 31506536
|
67 |
Girardin G, Huvier C, Delafosse D, et al. Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium [J]. Acta Mater., 2015, 91: 141
|
68 |
Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
|
69 |
Lu X, Wang D, Li Z M, et al. Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test [J]. Mater. Sci. Eng., 2019, 762A: 138114.
|
70 |
Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
|
71 |
Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
|
72 |
Hajilou T, Taji I, Christien F, et al. Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT [J]. Mater. Sci. Eng., 2020, 794A: 139967
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|