Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 271-282    DOI: 10.11902/1005.4537.2024.184
Current Issue | Archive | Adv Search |
Hydrogen Enhanced Localized Plasticity: A Critical Review
ZHANG Qianru, SUN Qingqing()
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
Cite this article: 

ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 271-282.

Download:  HTML  PDF(20499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The key of understanding hydrogen embrittlement mechanism of metals is to fully elucidate the interaction between hydrogen and dislocation. This paper introduces the history, content and development of the theory of hydrogen enhanced localized plasticity (HELP) and reviews it critically. The unsettling questions regard HELP mechanism are emphasized and addressed. In order to answer the unsettling questions, a new research methodology to reveal the interaction between hydrogen and dislocation is presented and prospected.

Key words:  hydrogen embrittlement      mechanism      hydrogen enhanced localized plasticity     
Received:  14 June 2024      32134.14.1005.4537.2024.184
O344  
Fund: National Natural Science Foundation of China(52101115)
Corresponding Authors:  SUN Qingqing, E-mail: sunqq7@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.184     OR     https://www.jcscp.org/EN/Y2025/V45/I2/271

Fig.1  In-situ electron microscopy observation of hydrogen-enhanced dislocation motion[22] and elastic shielding of hydrogen atmosphere[16]: (a-f) images showing the dislocation pile-up at different hydrogen pressure (0、35、50、70、90、95 Torr) in 310S stainless steel, (g) after introducing H2, dislocation pile-up of 310S stainless steel moves from the black lines to the white lines, (h) the elastic force between dislocations of Nb varies with the dislocation spacing in the presence and absence of hydrogen
Fig.2  Motion of a single screw dislocation of α-Fe in the presence and absence of hydrogen[27]: (a) bright-field transmission electron microscope image showing the pillar after a series of cyclic compression loading and unloading sessions. A mobile dislocation tagged as 1 in the boxed region is magnified and observed in Fig.2b, the white spots indicate the pinning points, (b) configurations of dislocation 1 at σmax in vacuum (N = 1) and in 2 Pa H2 (N = 2), (c) loading engineering stress σ and the digitally tracked projected glide distance δ of dislocation 1 in a typical load cycle are shown as a function of time. The critical stress for activating the dislocation (σc) and the maximum glide distance (δmax) are also indicated, (d, e) measured δmax and σc of dislocation 1 as a function of loading cycle number in vacuum (d) and in 2 Pa H2 (e). Errors for measurements of δmax and σc are ±1.4 nm and ±9.5 MPa, respectively. Error bars represent standard deviation. The tests in 2 Pa H2 were started after the pillar had been exposed to the 2 Pa H2 atmosphere for ~2 h. Scale bars, 100 nm
Fig.3  Hydrogen effects on the dislocation configurations of typical metals[33,37,39,42]: (a) bcc pure iron[33], in-situ electrochemical hydrogen charging with uniaxial tension, (b) fcc pure nickel[37], high pressure torsion after high-pressure hydrogen charging, (c) the ferritic-pearlitic low carbon steel (SS400)[39], in-situ fatigue loading under high pressure, (d) 316L austenitic stainless steel[42], fatigue loading after high-pressure hydrogen charging
Fig.4  Orientation dependence of deformed microstructure in metals: (a) orientation dependence of dislocation structure of fcc metals with medium to high stacking fault energy during uniaxial tension[54], (b) orientation dependence of dislocation structure in bcc metals[58], (c) orientation dependence of deformation twins in fcc metals, black dots indicate orientations that can produce deformation twins (unpublished results from our group, 316L stainless steel was used in this study), (d) orientation dependence of dislocation structure during fatigue loading of fcc metals[59], (e) types of dislocation structure with different orientations, types 1, 2, and 3 corresponding to I, II, and III in (a) and (b), respectively
Fig.5  A new investigation methodology developed by the this group to reveal the effect of hydrogen on dislocation collective behavior of metals
Fig.6  Dislocation structures of differently orientated bulk grains in pure Ni without and with 400 ppm hydrogen after deformed to a strain of 16.0%. The 400 ppm H-charged Ni fractured at 16.0%[57]: (a1) [100], (a2) [110] and (a3) [111] corner grains of uncharged sample, (b1) [100], (b2) [110] and (b3) [111] corner grains of 0.0004% (atomic fraction) H-charged sample. The black circles in the IPFs correspond to the grain orientation along the tensile direction of the site of interest. Note that the diffraction pattern corresponds to the largest cellular area in the TEM foil, (c) Cell/IDB size statistics of the uncharged Ni and 0.0004% (atomic fraction) H-charged Ni at different strain levels
1 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
2 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
3 Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
4 Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9(1): 3386
doi: 10.1038/s41467-018-05549-y pmid: 30140001
5 Luo H, Lu W J, Fang X F, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy [J]. Mater. Today, 2018, 21: 1003
6 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
7 Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
8 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
9 Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
10 Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
11 Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
12 Tetelman A S, Robertson W D. Direct observation and analysis of crack propagation in iron-3% silicon single crystals [J]. Acta Metall., 1963, 11: 415
13 Oriani R A. Whitney award lecture—1987: hydrogen—the versatile embrittler [J]. Corrosion, 1987, 43: 390
14 Westlake D G. The habit planes of zirconium hydride in zirconium and zircaloy [J]. J. Nucl. Mater., 1968, 26: 208
15 Birnbaum H K. Mechanical properties of metal hydrides [J]. J. Less Common Met., 1984, 104: 31
16 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
17 Wen M, Zhang L, An B, et al. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel [J]. Phys. Rev., 2009, 80B: 094113
18 Xie D G, Wan L, Shan Z W. Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal [J]. Corros. Sci., 2021, 183: 109307
19 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
20 Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: in situ TEM studies [J]. Acta Metall., 1988, 36: 111
21 Rozenak P, Robertson I M, Birnbaum H K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel [J]. Acta Metall. Mater., 1990, 38: 2031
22 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
23 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the character of dislocations in high-purity aluminum [J]. Acta Mater., 1999, 47: 2991
24 Tabata T, Birnbaum H K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron [J]. Scr. Metall., 1983, 17: 947
25 Robertson I M, Birnbaum H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel [J]. Acta Metall., 1986, 34: 353
26 Robertson I M. The effect of hydrogen on dislocation dynamics [J]. Eng. Fract. Mech., 2001, 68: 671
27 Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
28 Wang S, Martin M L, Sofronis P, et al. Hydrogen-induced intergranular failure of iron [J]. Acta Mater., 2014, 69: 275
29 Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of β-titanium [J]. Acta Mater., 2001, 49: 4313
30 Li Z J, Chu W Y, Gao K W, et al. Three-dimensional molecular dynamics simulation of hydrogen-enhanced dislocation emission and crack propagation [J]. Prog. Nat. Sci., 2002, 12: 1001
李忠吉, 褚武扬, 高克玮 等. 氢促进位错发射和裂纹扩展的三维分子动力学模拟 [J]. 自然科学进展, 2002, 12: 1001
31 Jiang X G, Chu W Y, Xiao J M. Mechanism of hydrogen-facilitated nucleation of cleavage crack [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 54
蒋兴钢, 褚武扬, 肖纪美. 氢促进解理裂纹形核的机制 [J]. 中国腐蚀与防护学报, 1995, 15: 54
32 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
33 Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
34 Wilcox B A, Smith G C. The Portevin-Le Chatelier effect in hydrogen charged nickel [J]. Acta Metall., 1964, 12: 371
35 McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
36 Robertson I M, Birnbaum H K. Effect of hydrogen on the dislocation structure of deformed nickel [J]. Scr. Metall., 1984, 18: 269
37 Wang S, Nagao A, Edalati K, et al. Influence of hydrogen on dislocation self-organization in Ni [J]. Acta Mater., 2017, 135: 96
38 Harris Z D, Lawrence S K, Medlin D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel [J]. Acta Mater., 2018, 158: 180
39 Wang S, Nagao A, Sofronis P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel [J]. Acta Mater., 2018, 144: 164
40 Ogawa Y, Birenis D, Matsunaga H, et al. Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron [J]. Scr. Mater., 2017, 140: 13
41 Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
42 Nygren K E, Nagao A, Wang S, et al. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel [J]. Acta Mater., 2021, 213: 116957
43 Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, 736A: 156
44 Nygren K E, Wang S, Bertsch K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy [J]. Acta Mater., 2018, 157: 218
45 Bertsch K M, Wang S, Nagao A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni [J]. Mater. Sci. Eng., 2019, 760A: 58
46 Yi J, Zhuang X Q, He J, et al. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy [J]. Corros. Sci., 2021, 189: 109628
47 Fu Z H, Wu P F, Zhu S Y, et al. Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys [J]. Corros. Sci., 2022, 194: 109933
48 Cheng H X, Luo H, Pan Z M, et al. Hydrogen embrittlement of a precipitation-strengthened high-entropy alloy [J]. Corros. Sci., 2024, 227: 111708
49 Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure and flow stress [J]. Mater. Sci. Eng., 2008, 494A: 61
50 Winther G, Huang X. Dislocation structures. Part II. Slip system dependence [J]. Philos. Mag., 2007, 87: 5215
51 Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence [J]. Philos. Mag., 2007, 87: 5189
52 Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns [J]. Philos. Mag., 2006, 86: 3981
53 Hansen N, Huang X, Hughes D A. Microstructural evolution and hardening parameters [J]. Mater. Sci. Eng., 2001, 317A: 3
54 Huang X. Grain orientation effect on microstructure in tensile strained copper [J]. Scr. Mater., 1998, 38: 1697
55 Huang X, Hansen N. Grain orientation dependence of microstructure in aluminium deformed in tension [J]. Scr. Mater., 1997, 37: 1
56 Hughes D A, Hansen N. The microstructural origin of work hardening stages [J]. Acta Mater., 2018, 148: 374
57 Hansen N, Mehl R F, Medalist A. New discoveries in deformed metals [J]. Metall. Mater. Trans., 2001, 32A: 2917
58 Wang S, Wang M P, Chen C, et al. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum [J]. Mater. Charact., 2014, 91: 10
59 Li P, Li S X, Wang Z G, et al. Formation mechanisms of cyclic saturation dislocation patterns in [001], [011] and [ 1 ¯ 11] copper single crystals [J]. Acta Mater., 2010, 58: 3281
60 Sun Q Q, Chen J B, Cao F H. Orientation dependence of dislocation structure in surface grain of pure aluminium deformed in tension [J]. Mater. Charact., 2022, 193: 112298
61 Sun Q Q, Ni Y, Wang S. Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension [J]. Acta Mater., 2021, 203: 116474.
62 Sun Q Q, He J, Nagao A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni [J]. Acta Mater., 2023, 246: 118660.
63 Li H B, Zheng Z L, He J, et al. Dislocation evolution in copper in the absence and presence of hydrogen [J]. Mater. Sci. Eng., 2022, 842A: 143082
64 Sun Q Q, Zhang H Z, Li H B, et al. Influence of near-surface dislocation cellular structure on Bauschinger effect [J]. J. Mater. Res. Technol., 2021, 13: 2012
65 Sun Q Q, Li H B, Wang S. Lattice rotation effect on the dislocation pattern of Cu deformed in tension [J]. Philos. Mag., 2022, 102: 875
66 Ghermaoui I M A, Oudriss A, Metsue A, et al. Multiscale analysis of hydrogen-induced softening in f.c.c. nickel single crystals oriented for multiple-slips: elastic screening effect [J]. Sci. Rep., 2019, 9: 13042
doi: 10.1038/s41598-019-49420-6 pmid: 31506536
67 Girardin G, Huvier C, Delafosse D, et al. Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium [J]. Acta Mater., 2015, 91: 141
68 Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
69 Lu X, Wang D, Li Z M, et al. Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test [J]. Mater. Sci. Eng., 2019, 762A: 138114.
70 Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
71 Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
72 Hajilou T, Taji I, Christien F, et al. Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT [J]. Mater. Sci. Eng., 2020, 794A: 139967
[1] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[7] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[8] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[9] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[10] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[11] MU Xianju, LI Xianghong, LEI Ran, DENG Shuduan. Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1465-1475.
[12] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[13] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[14] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[15] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
No Suggested Reading articles found!