|
|
Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy |
WANG Mingyang, XIA Da-Hai( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
|
Cite this article:
WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 261-270.
|
Abstract Hydrogen embrittlement is one of the problems when the high strength Al-alloy is applied in hydrogen related service environments. This paper first summarizes the sources of hydrogen and its role in high-strength Al-alloys, along with the main mechanisms of hydrogen embrittlement: hydrogen enhanced localized plasticity (HELP), hydrogen enhanced decohesion (HEDE), and adsorption induced dislocation emission (AIDE). The effects of microstructure (such as second phase, dislocation, and grain boundary) and environmental factors (including temperature, humidity, and strain rate) on the hydrogen embrittlement sensitivity of high-strength Al-alloy are analyzed and discussed. It is highlighted that the synergistic interactions of hydrogen and second phase with cracks during the hydrogen embrittlement process, as well as the coupling effects of various environmental factors on the hydrogen embrittlement sensitivity of high-strength aluminum alloys, are urgent issues that need to be addressed. Finally, it is worthy to point out that regulating the structure and number of irreversible hydrogen traps is one of the effective strategies to mitigate hydrogen embrittlement.
|
Received: 31 July 2024
32134.14.1005.4537.2024.238
|
|
Fund: National Natural Science Foundation of China(52031007);National Natural Science Foundation of China(52171077) |
Corresponding Authors:
XIA Da-Hai, E-mail: dahaixia@tju.edu.cn
|
1 |
Campestrini P, van Westing E P M, van Rooijen H W, et al. Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique [J]. Corros. Sci., 2000, 42: 1853
|
2 |
Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
|
3 |
Li Y Y, Wang Q, Zhang H W, et al. Role of solute atoms and vacancy in hydrogen embrittlement mechanism of aluminum: a first-principles study [J]. Int. J. Hydrog. Energy, 2023, 48: 4516
|
4 |
Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
|
5 |
Breen A J, Stephenson L T, Sun B H, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel [J]. Acta Mater., 2020, 188: 108
|
6 |
Weng S, Meng C, Zhu J F, et al. Effect of fatigue damage under stress-controlled mode on the corrosion behavior of AA7075-T651 al-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1029
|
|
翁 硕, 孟 超, 朱江峰 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1029
|
7 |
Chen J F, Zhang X F, Zou L C, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Mater. Charact., 2016, 114: 1
|
8 |
Zhang M H, Liu S D, Jiang J Y, et al. Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 1963
|
9 |
Chen S Y, Li J Y, Hu G Y, et al. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy [J]. J. Alloy. Compd., 2018, 757: 259
|
10 |
Liu L, Cui X Y, Jiang J T, et al. Segregation of the major alloying elements to Al3(Sc, Zr) precipitates in an Al-Zn-Mg-Cu-Sc-Zr alloy [J]. Mater. Charact., 2019, 157: 109898
|
11 |
Xia P, Wang S C, Huang H L, et al. Effect of Sc and Zr additions on recrystallization behavior and intergranular corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Materials, 2021, 14: 5516
|
12 |
Alexopoulos N D, Velonaki Z, Stergiou C I, et al. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al-Cu) aluminium alloy [J]. Corros. Sci., 2016, 102: 413
|
13 |
Song Y F, Ding X F, Xiao L R, et al. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy [J]. J. Alloy. Compd., 2017, 701: 508
|
14 |
Xu X H, Deng Y L, Pan Q L, et al. Enhancing the intergranular corrosion resistance of the Al-Mg-Si alloy with low Zn content by the interrupted aging treatment [J]. Metall. Mater. Trans., 2021, 52A: 4907
|
15 |
Han N M, Zhang X M, Liu S D, et al. Effects of retrogression and reaging on strength and fracture toughness of aluminum alloy 7050 [J]. Chin. J. Nonferrous Met., 2012, 22: 1871
|
|
韩念梅, 张新明, 刘胜胆 等. 回归再时效对7050铝合金强度和断裂韧性的影响 [J]. 中国有色金属学报, 2012, 22: 1871
|
16 |
Huang I W, Hurley B L, Yang F, et al. Dependence on temperature, pH, and Cl- in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6 [J]. Electrochim. Acta, 2016, 199: 242
|
17 |
Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
|
18 |
Safyari M, Mori G, Ucsnik S, et al. Mechanisms of hydrogen absorption, trapping and release during galvanostatic anodization of high-strength aluminum alloys [J]. J. Mater. Res. Technol., 2023, 22: 80
|
19 |
Peng H, Cheng X Y, Li X L, et al. Effect of V and Nb on hydrogen traps in high strength low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 415
|
|
彭 浩, 程晓英, 李晓亮 等. 高强度低合金钢中V和Nb对氢陷阱的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 415
|
20 |
Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. Roy. Soc. London, 1875, 23: 168
|
21 |
Negi A, Elkhodbia M, Barsoum I, et al. Coupled analysis of hydrogen diffusion, deformation, and fracture: a review [J]. Int. J. Hydrog. Energy, 2024, 82: 281
|
22 |
Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
|
|
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
|
23 |
Śmiałowski M. Hydrogen in Steel [J]. New York: Pergamon Press, 1962
|
24 |
Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
|
|
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
|
25 |
Fan Z B, Gao Z Y, Zong L J, et al. Corrosion behaviour and characteristics of 1050A Al-alloy exposed in typical atmospheres of Shandong Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1055
|
|
樊志彬, 高智悦, 宗立君 等. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1055
doi: 10.11902/1005.4537.2023.321
|
26 |
Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron [J]. Metall. Mater. Trans., 2018, 49A: 5015
|
27 |
Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron [J]. Trans. Japan Inst. Met., 1987, 28: 368
|
28 |
Chu W Y, Qiao L J, Li J X, et al. Typical Systems of Hydrogen Embrittlement and Stress Corrosio [M]. Beijing: Science Press, 2013
|
|
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀-典型体系 [M]. 北京: 科学出版社, 2013
|
29 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
|
|
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
30 |
Pundt A, Kirchheim R. Hydrogen in metals: microstructural aspects [J]. Annu. Rev. Mater. Res., 2006, 36: 555
|
31 |
Pfeil L B. The effect of occluded hydrogen on the tensile strength of iron [J]. Proc. Roy. Soc., 1926, 112A: 182
|
32 |
Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals: (1959 edward de mille campbell memorial lecture) [J]. Metall. Microstruct. Anal., 2016, 5: 557
|
33 |
Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsenges. Phys. Chem., 1972, 76: 848
|
34 |
Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys [J]. Nature, 2022, 602: 437
|
35 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
36 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
|
37 |
Sofronis P, Birnbaum H K. Hydrogen enhanced localized plasticity: a mechanism for hydrogen related fracture [A]. Proceedings of the 1993 ASME Winter Annual Meeting [C]. New Orleans, 1993
|
38 |
Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
|
39 |
Lynch S P. Mechanisms of hydrogen-assisted cracking [J]. Met. Forum, 1979, 2: 189
|
40 |
Daw M S, Baskes M I. Application of the embedded atom method to hydrogen embrittlement [A]. LatanisionRM, JonesRH. Chemistry and Physics of Fracture [M]. Dordrecht: Springer, 1987: 196
|
41 |
Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
|
42 |
Safyari M, Khossossi N, Meisel T, et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys [J]. Corros. Sci., 2023, 223: 111453
|
43 |
Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
|
44 |
Yamaguchi M, Tsuru T, Ebihara K I, et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations [J]. Mater. Trans., 2020, 61: 1907
|
45 |
Ji Y C, Dong C F, Wei X, et al. Discontinuous model combined with an atomic mechanism simulates the precipitated η′ phase effect in intergranular cracking of 7-series aluminum alloys [J]. Comp. Mater. Sci., 2019, 166: 282
|
46 |
Tsuru T, Yamaguchi M, Ebihara K, et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys [J]. Comp. Mater. Sci., 2018, 148: 301
|
47 |
Chen M Y, Liu S D, He K Z, et al. Hydrogen-induced failure in a partially-recrystallized Al-Zn-Mg-Cu alloy with different aging conditions: influence of deformation behavior dominated by microstructures [J]. Mater. Des., 2023, 233: 112199
|
48 |
Moshtaghi M, Safyari M, Hojo T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 184: 109937
|
49 |
Safyari M, Moshtaghi M, Kuramoto S, et al. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 37502
|
50 |
De Francisco U, Larrosa N O, Peel M J. The influence of temperature on hydrogen environmentally assisted cracking of AA7449-T7651 in moist air [J]. Corros. Sci., 2021, 180: 109199
|
51 |
Tang J W, Wang Y F, Fujihara H, et al. Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy [J]. Scr. Mater., 2024, 239: 115804
|
52 |
Safyari M, Hojo T, Moshtaghi M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 192: 110489
|
53 |
Taheri M, Albrecht J, Bernstein I, et al. Strain-rate effects on hydrogen embrittlement of 7075 aluminum [J]. Scr. Metall., 1979, 13: 871
|
54 |
Gest R J, Troiano A R. Stress corrosion and hydrogen embrittlement in an aluminum alloy [J]. Corrosion, 1974, 30: 274
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|