Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 217-223    DOI: 10.11902/1005.4537.2024.313
Current Issue | Archive | Adv Search |
High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy
GUO Jingbo1, YANG Shouhua1(), ZHOU Ziyi1, MU Rende2, XIE Yun1, SHU Xiaoyong1, DAI Jianwei2, PENG Xiao1
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 217-223.

Download:  HTML  PDF(7094KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High entropy alloy (HEA) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 (atomic fraction) was fabricated by means of laser melting deposition (LMD) technique. The prepared alloy consists of a single body-centered-cubic (bcc) phase, and its grain size gradually refined as the laser power decreased from 900 W to 700 W. The bcc HEAs obtained at various laser powers were subjected to isothermal oxidation at 1100 oC in either dry air or wet air (air + 10%H2O (volume fraction)), respectively. There were several observations: all HEAs had the ability to thermally develop a protective scale of Al2O3 in both dry and wet airs; the decrease in grain size favored the formation of Al2O3 scale with a slower growth rate; the presence of H2O vapor accelerated the growth rate of Al2O3 scale. Finally, the above findings were discussed and interpreted.

Key words:  laser additive manufacturing      AlCoCrFeNiSi      high entropy alloy      high-temperature oxidation     
Received:  25 September 2024      32134.14.1005.4537.2024.313
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52371067)
Corresponding Authors:  YANG Shouhua, E-mail: by2201158@buaa.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.313     OR     https://www.jcscp.org/EN/Y2025/V45/I1/217

Scanning speed

/ mm·min-1

AlCoCrFeNi powder feeding speed

/ g·min-1

Si powder feeding speed

/ g·min-1

Spot diameter

/ mm

Overlap rate

/ %

Protective gas flow rate

/ L·min-1

Defocusing distance

/ mm

8003.40.18150155
Table 1  LMD process parameters for manufacturing Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 HEA
Laser powerAlCoCrFeNiSi
700 W18.917.115.412.816.819.0
800 W22.215.912.210.218.021.5
900 W22.017.912.08.520.019.6
Table 2  Chemical compositions of Al0.21Co0.17Cr0.13Fe0.11-Ni0.18Si0.20 fabricated by LMD at different laser powers
Fig.1  XRD patterns of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 fa-bricated by LMD at different laser powers
Fig.2  Morphologies (a, b) and grain size distributions (c, d) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 manufactured by LMD at 700 W (a, c) and 900 W (b, d). The inset in Fig.2a is a magnified image
Fig.3  Oxidation kinetics (a) and corresponding parabolic plots (b) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 fabricated by LMD at different laser powers during 20 h exposure to dry air at 1100 oC
Fig.4  Cross-sectional morphologies of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 fabricated by LMD at 700 W (a), 800 W (b) and 900 W (c) after 20 h exposure to dry air at 1100 oC
Fig.5  Oxidation kinetics (a) and corresponding parabolic plots (b) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 fabricated by LMD at different laser powers during 20 h exposure to wet air at 1100 oC
Fig.6  Cross-sectional morphologies of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 fabricated by LMD at 700 W (a), 800 W (b) and 900 W (c) after 20 h exposure to wet air at 1100 oC
Fig.7  Ellingham-Richardson diagram for corresponding oxides of constituent elements of AlCoCrFeNiSi
1 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
2 Wang Z F, Zhang S. Research and application progress of high-entropy alloys [J]. Coatings, 2023, 13: 1916
3 An Z B, Mao S C, Zhang Z, et al. Strengthening-Toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
4 Manzoni A, Daoud H, Völkl R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy [J]. Ultramicroscopy, 2013, 132: 212
doi: 10.1016/j.ultramic.2012.12.015 pmid: 23352803
5 Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
6 Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys [J]. J. Alloy. Compd., 2009, 488(1): 57
7 Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2008, 491A: 154
8 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
9 Munitz A, Salhov S, Hayun S, et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2016, 683: 221
10 Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys [J]. J. Alloy.Compd., 2016, 674: 229
11 Chen L J, Zhou Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
12 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
13 Yi H Q, Yang X Y, Yang Y, et al. New insights in the oxidation behavior of (FeCoCrNi)94Al4Ti2Si x high entropy alloys at 1100 oC [J]. Corros. Sci., 2024, 227: 111673
14 Li Y T, Zhang P, Zhang J Y, et al. Oxidation behavior of AlCoCrFeNiSi x high-entropy alloys at 1100 oC [J]. Corros. Sci., 2021, 190: 109633
15 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
16 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
17 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
18 Zhou Z Y, Peng X, Lü W Y, et al. Ultra-high temperature oxidation resistant refractory high entropy alloys fabricated by laser melting deposition: Al concentration regulation and oxidation mechan-ism [J]. Corros. Sci., 2023, 224: 111537
19 Tong Z P, Liu H L, Jiao J F, et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism [J]. Opt. Laser Technol., 2020, 130: 106326
20 Mohanty A, Sampreeth J K, Bembalge O, et al. High temperature oxidation study of direct laser deposited Al X CoCrFeNi (X = 0.3, 0.7) high entropy alloys [J]. Surf. Coat. Technol., 2019, 380: 125028
21 Zhou Z Y, Cui T Y, Guo H B, et al. Laser additively manufacturing of Al0.5CoCrFeNiTi0.5 high-entropy alloys with increased resistances to corrosion 3.5%NaCl and oxidation at 1000 oC [J]. J. Mater. Sci., 2023, 58: 10148
22 Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
23 Zhang Y C, Yang L, Dai J, et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220
24 Zhang W, Dong Z H, Kang H W, et al. Enhancement of strength-ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1234
25 Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
彭 晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
26 Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/b9nr00118b pmid: 20644803
27 Yang X, Peng X, Xu C M, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156: C167
28 Xie L P, Chen M H, Wang J L, et al. High temperature oxidation behavior of ultrafine grained ODS Nickel-based superalloy prepared by spark plasma sintering [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 709
解磊鹏, 陈明辉, 王金龙 等. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 709
doi: 10.11902/1005.4537.2021.237
29 Wagner C. Reaction types in the oxidation of alloys [J]. Z. Elektrochem., 1959, 63: 772
30 Maris-Sida M C, Meier G H, Pettit F S. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers [J]. Metall. Mater. Trans., 2003, 34A: 2609
31 Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
[1] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[2] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[3] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[4] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[5] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[6] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[7] CAO Fuyang, WANG Haoquan, JI Qian, DING Hengnan, YUAN Zhizhong, LUO Rui. Tribo-corrosion Performance of Atmospheric Plasma Sprayed FeCoCrNiMn High Entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[8] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[9] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[10] WANG Kai, LI Chenpei, LU Jinling, WANG Zhenjiang, WANG Wei. Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
[11] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[12] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[13] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[14] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[15] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
No Suggested Reading articles found!