|
|
High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy |
GUO Jingbo1, YANG Shouhua1( ), ZHOU Ziyi1, MU Rende2, XIE Yun1, SHU Xiaoyong1, DAI Jianwei2, PENG Xiao1 |
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
Cite this article:
GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 217-223.
|
Abstract High entropy alloy (HEA) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 (atomic fraction) was fabricated by means of laser melting deposition (LMD) technique. The prepared alloy consists of a single body-centered-cubic (bcc) phase, and its grain size gradually refined as the laser power decreased from 900 W to 700 W. The bcc HEAs obtained at various laser powers were subjected to isothermal oxidation at 1100 oC in either dry air or wet air (air + 10%H2O (volume fraction)), respectively. There were several observations: all HEAs had the ability to thermally develop a protective scale of Al2O3 in both dry and wet airs; the decrease in grain size favored the formation of Al2O3 scale with a slower growth rate; the presence of H2O vapor accelerated the growth rate of Al2O3 scale. Finally, the above findings were discussed and interpreted.
|
Received: 25 September 2024
32134.14.1005.4537.2024.313
|
|
Fund: National Natural Science Foundation of China(52371067) |
Corresponding Authors:
YANG Shouhua, E-mail: by2201158@buaa.edu.cn
|
1 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
2 |
Wang Z F, Zhang S. Research and application progress of high-entropy alloys [J]. Coatings, 2023, 13: 1916
|
3 |
An Z B, Mao S C, Zhang Z, et al. Strengthening-Toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
|
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
4 |
Manzoni A, Daoud H, Völkl R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy [J]. Ultramicroscopy, 2013, 132: 212
doi: 10.1016/j.ultramic.2012.12.015
pmid: 23352803
|
5 |
Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
|
6 |
Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys [J]. J. Alloy. Compd., 2009, 488(1): 57
|
7 |
Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2008, 491A: 154
|
8 |
Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
|
9 |
Munitz A, Salhov S, Hayun S, et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2016, 683: 221
|
10 |
Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys [J]. J. Alloy.Compd., 2016, 674: 229
|
11 |
Chen L J, Zhou Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
|
12 |
Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
|
13 |
Yi H Q, Yang X Y, Yang Y, et al. New insights in the oxidation behavior of (FeCoCrNi)94Al4Ti2Si x high entropy alloys at 1100 oC [J]. Corros. Sci., 2024, 227: 111673
|
14 |
Li Y T, Zhang P, Zhang J Y, et al. Oxidation behavior of AlCoCrFeNiSi x high-entropy alloys at 1100 oC [J]. Corros. Sci., 2021, 190: 109633
|
15 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
|
16 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
|
17 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
|
18 |
Zhou Z Y, Peng X, Lü W Y, et al. Ultra-high temperature oxidation resistant refractory high entropy alloys fabricated by laser melting deposition: Al concentration regulation and oxidation mechan-ism [J]. Corros. Sci., 2023, 224: 111537
|
19 |
Tong Z P, Liu H L, Jiao J F, et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism [J]. Opt. Laser Technol., 2020, 130: 106326
|
20 |
Mohanty A, Sampreeth J K, Bembalge O, et al. High temperature oxidation study of direct laser deposited Al X CoCrFeNi (X = 0.3, 0.7) high entropy alloys [J]. Surf. Coat. Technol., 2019, 380: 125028
|
21 |
Zhou Z Y, Cui T Y, Guo H B, et al. Laser additively manufacturing of Al0.5CoCrFeNiTi0.5 high-entropy alloys with increased resistances to corrosion 3.5%NaCl and oxidation at 1000 oC [J]. J. Mater. Sci., 2023, 58: 10148
|
22 |
Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
|
23 |
Zhang Y C, Yang L, Dai J, et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220
|
24 |
Zhang W, Dong Z H, Kang H W, et al. Enhancement of strength-ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1234
|
25 |
Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
|
|
彭 晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
|
26 |
Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/b9nr00118b
pmid: 20644803
|
27 |
Yang X, Peng X, Xu C M, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156: C167
|
28 |
Xie L P, Chen M H, Wang J L, et al. High temperature oxidation behavior of ultrafine grained ODS Nickel-based superalloy prepared by spark plasma sintering [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 709
|
|
解磊鹏, 陈明辉, 王金龙 等. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 709
doi: 10.11902/1005.4537.2021.237
|
29 |
Wagner C. Reaction types in the oxidation of alloys [J]. Z. Elektrochem., 1959, 63: 772
|
30 |
Maris-Sida M C, Meier G H, Pettit F S. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers [J]. Metall. Mater. Trans., 2003, 34A: 2609
|
31 |
Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|