Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 224-230    DOI: 10.11902/1005.4537.2024.233
Current Issue | Archive | Adv Search |
First Principles Study on Effect of B Addition on Oxidation Resistance of MoSi2-based Compound
CHEN Zheng1, YUWEN Pei2(), WEN Sihan2, LI Meifeng2, SHA Jiangbo2, ZHOU Chungen2
1 School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article: 

CHEN Zheng, YUWEN Pei, WEN Sihan, LI Meifeng, SHA Jiangbo, ZHOU Chungen. First Principles Study on Effect of B Addition on Oxidation Resistance of MoSi2-based Compound. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 224-230.

Download:  HTML  PDF(8111KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the first-principles calculation method, the influence of B addition on the oxidation behavior of compound pair MoSi2/MoB was comprehensively investigated. The results showed that the oxygen adsorption energy at the interface of compound pair MoSi2/MoB, and of the compound MoB itself is lower and the diffusion activation energy of oxygen atom passing through the interface MoSi2/MoB is also lower, which may facilitate the rapid oxidation of the compound surface during the initial oxidation stage and enable the rapid formation of a protective oxide scale. When the oxidation process reached a stable state, a scale of borosilicate with 6%B (atomic fraction) may form on the compound surface with the lowest oxygen diffusion coefficient, namely, excellent oxidation resistance of the oxide scale. Therefore, precise control of B-doping is a promising strategy for designing MoSi2-based compound Mo-Si-B of high oxidation resistance.

Key words:  Mo-Si-B      MoSi2/MoB      borosilicate      first-principle calculation     
Received:  30 July 2024      32134.14.1005.4537.2024.233
ZTFLH:  TG174.445  
Fund: National Natural Science Foundation of China(51431003);Joint Fund of National Natural Science Foundation of China(U1435201)
Corresponding Authors:  YUWEN Pei, E-mail: ywp1991@buaa.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.233     OR     https://www.jcscp.org/EN/Y2025/V45/I1/224

Fig.1  Simulated atomic structure models of different materials: (a) MoSi2 crystal, (b) MoB crystal, (c) MoSi2/MoB interface, and (d-i) amorphous borosilicates containing 0%, 2%, 4%, 6%, 8%, and 10% (atom fraction) B, respectively
Fig.2  MoSi2/MoB model for simulating the adsorption energies of oxygen
ModelPositionEadsorption / eV
MoSi2/MoBO occupy surface site of MoSi2-6.078
O occupy surface site of MoB②-6.793
O occupy surface site of MoSi2/MoB③-8.306
O occupy the site inside MoSi2-6.363
O occupy the site inside MoB⑤-3.004
O occupy the site inside MoSi2/MoB⑥-5.337
Table 1  Adsorption energiesof oxygen on different kinds of sites
Fig.3  MoSi2/MoB model for simulating the diffusion activation energies of oxygen
Fig.4  Reaction energy profiles of oxygen diffusing into the compound through different pathways
Fig.5  Models of MoSi2 covered with amorphous SiO2 (0%B) (a) and five borosilicates containing 2% (b), 4% (c), 6% (d), 8% (e) and 10% (f) B

Diffusivity

coefficient

Amorphous SiO22%B- borosilicate4%B- borosilicate6%B- borosilicate8%B- borosilicate10%B- borosilicate
O17.987 × 10-817.683 × 10-817.062 × 10-814.192 × 10-816.085 × 10-817.346 × 10-8
Si5.162 × 10-85.659 × 10-86.440 × 10-86.672 × 10-85.126 × 10-84.923 × 10-8
B-10.800 × 10-813.568 × 10-812.699 × 10-814.151 × 10-811.115 × 10-8
Table 2  Diffusion coefficients of O, Si and B in various borosilicates containing different contents of B
ModelsEcohesive / eVHformation / eV
Amorphous SiO2 (0%B)-6.339-2.436
2%B-content in borosilicate-6.445-2.454
4%B-content in borosilicate-6.512-2.471
6%B-content in borosilicate-6.788-2.553
8%B-content in borosilicate-6.366-2.281
10%B-content in borosilicate-6.241-2.214
Table 3  Formation enthalpies and cohesive energies of various borosilicates containing different contents of B
Fig.6  Static oxidation kinetics of Mo-Si-B intermetallic compounds containing different contents of B at 1250 oC
1 Murayama Y, Hanada S. High temperature strength, fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys [J]. Sci. Technol. Adv. Mater., 2002, 3: 145
2 Subramanian P R, Mendiratta M G, Dimiduk D M, et al. Advanced intermetallic alloys-beyond gamma titanium aluminides [J]. Mater. Sci. Eng., 1997, 239-240A: 1
3 Guo X P, Gao L M, Guan P, et al. Microstructure and mechanical properties of an advanced niobium based ultrahigh temperature alloy [J]. Mater. Sci. Forum, 2007, 539-543: 3690
4 Voglewede B, Rangel V R, Varma S K. The effects of uncommon silicides on the oxidation behavior of alloys from the Nb-Cr-Si system [J]. Corros. Sci., 2012, 61: 123
5 Geng J, Tsakiropoulos P. A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf and Sn [J]. Intermetallics, 2007, 15: 382
6 Zelenitsas K, Tsakiropoulos P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800 oC [J]. Mater. Sci. Eng., 2006, 416A: 269
7 Sun Z P, Guo X P, Tian X D, et al. Effects of B and Si on the fracture toughness of the Nb-Si alloys [J]. Intermetallics, 2014, 54: 143
8 Liu Z D, Hou S X, Liu D Y, et al. An experimental study on synthesizing submicron MoSi2-based coatings using electrothermal explosion ultra-high speed spraying method [J]. Surf. Coat. Technol., 2008, 202: 2917
9 Qiao Y Q, Guo X P. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process [J]. Appl. Surf. Sci., 2010, 256: 7462
10 Wei L, Shao W, Li M F, et al. Hot corrosion behaviour of Mo-62Si-5B (at.%) alloy in different molten salts at 900 oC [J]. Corros. Sci., 2019, 158: 108099
11 Pang J, Wang W, Zhou C G. Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys [J]. Corros. Sci., 2016, 105: 1
12 Sakidja R, Park J S, Hamann J, et al. Synthesis of oxidation resistant silicide coatings on Mo-Si-B alloys [J]. Scr. Mater., 2005, 53: 723
13 Chen Z, Shao W, Li M F, et al. Effect of minor B modification on the oxidation behavior of MoSi2 alloy at high temperature [J]. Corros. Sci., 2023, 216: 111070
14 Wen S H, Zhou C G, Sha J B. Microstructural evolution and oxidation behaviour of Mo-Si-B coatings on an Nb-16Si-22Ti-7Cr-2Al-2Hf alloy at 1250 oC prepared by spark plasma sintering [J]. Surf. Coat. Technol., 2018, 352: 320
15 Du W, Zhang L Q, Ye F, et al. Intrinsic embrittlement of MoSi2 and alloying effect on ductility: studied by first-principles [J]. Phys. Condens. Matter, 2010, 405B: 1695
16 Wang S, Pang X J, Xu Y J, et al. Microstructure, mechanical and tribological properties of in situ MoB reinforced Cu-Al matrix composites [J]. Tribol. Int., 2023, 177: 107941
17 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys. Condens. Matter, 2002, 14: 2717
18 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO [J]. Surf. Coat. Technol., 2011, 205: 5178
19 Fischer T H, Almlöf J. General methods for geometry and wave function optimization [J]. J. Phys. Chem., 1992, 96: 9768
20 Ritt P, Sakidja R, Perepezko J H. Mo-Si-B based coating for oxidation protection of SiC-C composites [J]. Surf. Coat. Technol., 2012, 206: 4166
21 Lemberg J A, Ritchie R O. Mo-Si-B alloys for ultrahigh-temperature structural applications [J]. Adv. Mater., 2012, 24: 3445
22 Delley B. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991, 94: 7245
23 Zheng H Z, Chen Z, Li G F, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations [J]. Corros. Sci., 2017, 126: 286
24 Zoroddu A, Bernardini F, Ruggerone P, et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory [J]. Phys. Rev., 2001, 64B: 045208
25 Zhang J H, Duan Y H, Li C X. A First-principles investigation of structural properties, electronic structures and optical properties of β- and γ-LiAl(SiO3)2 [J]. Ceram. Int., 2017, 43: 13948
26 Yoshimi K, Nakatani S, Suda T, et al. Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures [J]. Intermetallics, 2002, 10: 407
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[3] . Effects of Ultrasonic Electroless Ni-P Plating on corrosion resistance of Sintered NdFeB Permanent magnets[J]. 中国腐蚀与防护学报, 2006, 26(2): 100-102 .
[4] Qinglong Yuan; Yuefei Zhang; Yongan Su; Chenzhong Chi; Bin Tang; Zhong Xv. AIR OXIDATION AT 400℃~700℃ OF TITANIZED PURE COPPER PREPARED BY A DOUBLE GLOW DISCHARGE PROCESS[J]. 中国腐蚀与防护学报, 2005, 25(2): 102-105 .
No Suggested Reading articles found!