Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1370-1376    DOI: 10.11902/1005.4537.2023.386
Current Issue | Archive | Adv Search |
Effect of Pt Coating on Electrochemical Behavior and Interfacial Conductivity of TA4 Bipolar Plate in Anode Side Environment of Proton Exchange Membrane Water Electrolyzer for Hydrogen Production
XU Guizhi1,2, DU Xiaoze1, HU Xiao2, SONG Jie2()
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2 State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
Cite this article: 

XU Guizhi, DU Xiaoze, HU Xiao, SONG Jie. Effect of Pt Coating on Electrochemical Behavior and Interfacial Conductivity of TA4 Bipolar Plate in Anode Side Environment of Proton Exchange Membrane Water Electrolyzer for Hydrogen Production. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1370-1376.

Download:  HTML  PDF(11023KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pt coatings were successfully deposited on the surface of TA4 Ti-alloy using the DC pulse magnetron sputtering technique. With the increasing deposition time, the lattice constants of Pt coating increased from 0.39112 nm at 5 min to 0.39128 nm at 15 min, correspondingly the thickness increased from approximately 0.29 μm to around 0.95 μm. Electrochemical studies revealed that the open circuit voltage (OCP) of Pt-coated TC4 was approximately 0.77 V higher than that of the plain TA4. With the extension of deposition time, the interfacial electrochemical reaction resistance further increases, as a result, its charge transfer resistance will gradually increase with deposition time as described as below: 5.52 × 104, 5.91 × 104, and 6.1 × 104 Ω·cm2, respectively. Importantly, the Pt coating effectively enhanced and maintained the excellent interface conductivity, as the interface contact resistance (ICR) only exhibited a slight increase after a simulated steady-state polarization testing. In sum, the Pt coating can significantly enhance the interfacial conductivity of TA4 in the anode side environment of proton exchange membrane hydrogen electrolyzer (PEMWE).

Key words:  PEMWE      bipolar plates      Pt coating      EIS      interface contact resistance     
Received:  12 December 2023      32134.14.1005.4537.2023.386
ZTFLH:  O646  
Fund: National Key Research and Development Program of China(2021YFB4000100);Science and Technology Foundation of SGCC(521532220014)
Corresponding Authors:  SONG Jie, E-mail: songjie_bj@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.386     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1370

Fig.1  XRD patterns of the Pt coating on the TA4 alloy
Fig.2  Surface (a-c) and cross-section (d-f) morphologies of TA4 and Pt-coated TA4 prepared at various durations, and the element mapping of Ti, Pt, and O corresponding to (d-f), respectively
Fig.3  OCP evolutions of TA4 and Pt-coated TA4
Fig.4  Potentiodynamic polarization curves of TA4 and Pt-coated TA4 prepared at various durations
Fig.5  Nyquist (a), Bode (b) plots and equivalent circuit (c) of the TA4 and Pt-coated TA4 prepared at various durations
Sample

Rs

Ω·cm2

Qf

10-5 Ω-1·cm-2·s n1

n1

Rf

Ω·cm2

Qdl

10-5 Ω-1·cm-2·s n2

n2

Rct

104 Ω·cm2

χ2
TA4139.616.530.867563.74.490.854.321.09 × 10-4
5 min136.19.030.788215.15.010.7675.521.792 × 10-4
10 min161.67.110.783380.56.030.7855.913.58 × 10-4
15 min165.16.960.7676593.380.766.13.125 × 10-4
Table 1  The quantitative information of the EIS data for the bare and Pt-coated TA4
Fig.6  Response of current density of TA4 and Pt-coated TA4 prepared at various durations
Fig.7  ICRs vs. compaction force of bare and Pt-coated TA4 before (a) and after (b) potentiostatic polarization, and typical values of ICR at 1.4 MPa (c)
Fig.8  Surface (a-c) and cross-section (d-f) morphologies of TA4 and Pt-coated TA4 after potentiostatic polarization for 12 h, and the element mapping of Ti, Pt, and O corresponding to (d-f), respectively
1 H-vision in Rotterdam targets ‘blue’ hydrogen from natural gas [J]. Fuel Cells Bull., 2019, 2019: 9
2 Ayers K E, Capuano C, Anderson E B. Recent advances in cell cost and efficiency for PEM-based water electrolysis [J]. ECS Trans., 2012, 41: 15
3 Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review [J]. Renew. Sustain. Energy Rev., 2019, 111: 1
4 Celik S, Timurkutluk B, Aydin U, et al. Development of titanium bipolar plates fabricated by additive manufacturing for PEM fuel cells in electric vehicles [J]. Int. J. Hydrog. Energy, 2022, 47: 37956
5 Utomo W B, Donne S W. Electrochemical behaviour of titanium in H2SO4-MnSO4 electrolytes [J]. Electrochim. Acta, 2006, 51: 3338
6 Babic U, Suermann M, Büchi F N, et al. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development [J]. J. Electrochem. Soc., 2017, 164: F387
7 Sun H, Cooke K, Eitzinger G, et al. Development of PVD coatings for PEMFC metallic bipolar plates [J]. Thin Solid Films, 2013, 528: 199
8 Jin J, He Z, Zhao X H. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC [J]. Int. J. Hydrog. Energy, 2020, 45: 12489
9 Jannat S, Rashtchi H, Atapour M, et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells [J]. J. Power Sources, 2019, 435: 226818
10 Jung H Y, Huang S Y, Popov B N. High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC) [J]. J. Power Sources, 2010, 195: 1950
11 Gago A S, Ansar S A, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J]. J. Power Sources, 2016, 307: 815
12 Chi X, Song C H, Bao J F, et al. Research progress of titanium-based thin films prepared by magnetron sputtering [J]. Therm. Spray Technol., 2020, 12(2): 17
迟 迅, 宋长虹, 鲍君峰 等. 磁控溅射制备钛基薄膜研究进展 [J]. 热喷涂技术, 2020, 12(2): 17
13 Zhang J C, Wu W D, Xu H, et al. The recent developments and applications of magnetron sputtering [J]. Mater. Rep., 2004, 18(4): 56
张继成, 吴卫东, 许华 等. 磁控溅射技术新进展及应用 [J]. 材料导报, 2004, 18(4): 56
14 Zhang P P, Ding L X, Zhang S T. Effects of process parameters on crystalline TiO2 thin films prepared by magnetron sputtering [J]. Surf. Technol., 2015, 44(5): 48
张盼盼, 丁龙先, 张帅拓. 工艺参数对磁控溅射制备TiO2薄膜结晶性的影响 [J]. 表面技术, 2015, 44(5): 48
15 Wang H Q, Jiang H W, Wang F B, et al. The effect of process parameters on the structure of magnetron sputtering TiN films [J]. Plat. Finish., 2019, 41(12): 20
王槐乾, 姜宏伟, 王方标 等. 工艺参数对磁控溅射TiN膜结构的影响 [J]. 电镀与精饰, 2019, 41(12): 20
16 Kıstı M, Uysal S, Kaya M F. Development of Pt coated SS316 mesh gas diffusion electrodes for a PEM water electrolyzer anode [J]. Fuel, 2022, 324: 124775
17 Orazem M E, Tribollet B. Electrochemical Impedance Spectroscopy [M]. Hoboken: John Wiley & Sons, 2008
18 Luo H, Gao S J, Dong C F, et al. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution [J]. Electrochim. Acta, 2014, 135: 412
19 Wang X F, Luo H, Zhao Q C, et al. Investigations on the passive and pitting behaviors of 17-4 PH martensitic stainless steel containing Al2O3 inclusions in chlorine environment [J]. Colloids Surf. A: Physicochem. Eng. Asp., 2023, 660: 130861
20 Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
21 Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
22 Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis [J]. Int. J. Hydrog. Energy, 2013, 38: 4901
23 Vermilyea D A. Advances in Electrochemistry and Electrochemical Engineering [M]. New York: John Wiley & Sons, 1963
24 Oyarce A, Holmström N, Bodén A, et al. Operating conditions affecting the contact resistance of bi-polar plates in proton exchange membrane fuel cells [J]. J. Power Sources, 2013, 231: 246
25 Li Y Y, Zhu Y Y, Wang M Z, et al. Recent progress on titanium sesquioxide: fabrication, properties, and applications [J]. Adv. Funct. Mater., 2022, 32: 2203491
[1] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[2] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[3] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[4] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[5] LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[9] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[10] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[11] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[12] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[13] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[15] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
No Suggested Reading articles found!