Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1361-1369    DOI: 10.11902/1005.4537.2023.375
Current Issue | Archive | Adv Search |
Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution
WANG Tiancong1, ZHAO Dongyang2(), XIANG Xueyun1, WU Hang1, WANG Wen2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1361-1369.

Download:  HTML  PDF(16223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A study was conducted on the degradation behavior of an epoxy corrosion-resistant coating in NaCl solution, focusing on the electrochemical impedance, water absorption, and adhesion of the coating. The results indicated that the coating still exhibits good protective performance after immersion for 5350 h. Meanwhile, a correlation between the changes in electrochemical impedance, water absorption, and adhesion of the coating was observed. The physical/chemical reaction between the electrolyte solution and the resin material might be the main mechanism of the coating degradation, with temperature being a significant influencing factor and the effect of coating thickness being less apparent.

Key words:  epoxy coating      electrochemical impedance spectroscopy      water absorption      adhesion     
Received:  24 November 2023      32134.14.1005.4537.2023.375
ZTFLH:  TG174  
Fund: High-tech Ship Research Project from the Ministry of Industry and Information Technology of China(MC-202003-Z01-02)
Corresponding Authors:  ZHAO Dongyang, E-mail: dyzhao@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.375     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1361

Fig.1  Electrochemical cell for EIS measurements on coated samples

Thickness of the coatings

μm

|Z|0.1 Hz at 30oC / Ω·cm2|Z|0.1 Hz at 40oC / Ω·cm2
0 h5350 h0 h5350 h
80-901.01 × 10103.27 × 1093.50 × 1091.46 × 109
100-1104.81 × 1092.74 × 1095.31 × 1093.21 × 109
140-1501.30 × 10106.56 × 1099.78 × 1094.64 × 109
Table 1  |Z|0.1 Hz values of the coatings after immersion
Fig.2  Equivalent circuit model for EIS analysis
Fig.3  Nyquist (a1-c1) and Bode (a2-c2) plots of the coatings with the thicknesses of 80-90 μm (a1, a2), 100-110 μm (b1, b2) and 140-150 μm (c1, c2) after immersion at 30oC for different time
Fig.4  Nyquist (a1-c1) and Bode (a2-c2) plots of the coatings with the thicknesses of 80-90 μm (a1, a2), 100-110 μm (b1, b2) and 140-150 μm (c1, c2) after immersion at 40oC for different time
Fig.5  Variations of Rc (a) and Cc (b) of the coatings with immersion time at 30oC
Fig.6  Variations of Rc (a) and Cc (b) of the coatings with immersion time at 40oC
Fitting parameter30oC40oC
Z022.7219122.41299
a-2.51764 × 10-4-2.89779 × 10-4
b-0.00667-0.01635
c-3.66002 × 10-92.89515 × 10-9
d1.19179 × 10-41.44238 × 10-4
f8.50083 × 10-76.68987 × 10-7
Table 2  Fitting data of various parameters in the function equation (2)
Fig.7  Contour plots of the equivalent impedances as the functions of immersion time and coating thickness at 30oC (a) and 40oC (b)
Fig.8  Variations of OCP of the coatings with immersion time in NaCl solution at 30oC (a) and 40oC (b)
Fig.9  Time dependances of water absorptions of the coatings during immersion at 30oC (a) and 40oC (b)
Fig.10  Adhesions of the coatings after immersion in NaCl solution for different time at 30℃ (a) and 40℃ (b)
Fig.11  Macro-morphologies of the coatings with the thicknesses of 80~90 μm (a1-a3), 100~110 μm (b1-b3) and 140~150 μm (c1-c3) after immersion at 30oC for 0 h (a1-c1), 1030 h (a2-c2) and 5350 h (a3-c3) and then adhesion test
Fig.12  Macro-morphologies of the coatings with the thicknesses of 80-90 μm (a1-a3), 100-110 μm (b1-b3) and 140-150 μm (c1-c3) after immersion at 40°C for 0 h (a1-c1), 1030 h (a2-c2) and 5350 h (a3-c3) and then adhesion test
1 Dong Y H, Zhou Q. Relationship between ion transport and the failure behavior of epoxy resin coatings [J]. Corros. Sci., 2014, 78: 22
2 Chuang T J, Nguyen T, Lee S. Micro-mechanic model for cathodic blister growth in painted steel [J]. J. Coat. Technol., 1999, 71: 75
3 Inone P C, Garcia C M, Rúvolo-Filho A. Evaluating barrier properties of organic coatings by water permeation and electrochemical methods [J]. J. Coat. Technol., 2003, 75: 29
4 Martin J W, Nguyen T, Byrd E, et al. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus [J]. Polym. Degrad. Stab., 2002, 75: 193
5 Brunner S, Richner P, Müller U, et al. Accelerated weathering device for service life prediction for organic coatings [J]. Polym. Test., 2005, 24: 25
6 Ochs H, Vogelsang J. Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions [J]. Electrochim. Acta, 2004, 49: 2973
7 Tahmassebi N, Moradian S, Mirabedini S M. Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements [J]. Prog. Org. Coat., 2005, 54: 384
8 Deyab M A, Ouarsal R, Al-Sabagh A M, et al. Enhancement of corrosion protection performance of epoxy coating by introducing newhydrogenphosphate compound [J]. Prog. Org. Coat., 2017, 107: 37
9 Cambier S M, Posner R, Frankel G S. Coating and interface degradation of coated steel, part 1: field exposure [J]. Electrochim. Acta, 2014, 133: 30
10 Cambier S M, Frankel G S. Coating and interface degradation of coated steel, part 2: accelerated laboratory tests [J]. Electrochim. Acta, 2014, 136: 442
11 Upadhyay V, Battocchi D. Localized electrochemical characterization of organic coatings: a brief review [J]. Prog. Org. Coat., 2016, 99: 365
12 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
doi: 10.11902/1005.4537.2018.152
13 Weldon D G. Failure Analysis of Paints and Coatings [M]. Chichester: John Wiley & Sons Ltd., 2009: 9
14 Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
15 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
16 Le Thu Q, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51: 2491
17 Bierwagen G P, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
18 Ahadi M M, Attar M M. OCP measurement: a method to determine CPVC [J]. Sci. Iran., 2007, 14: 369
19 Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 255, doi: 10.1016/S0300-9440(97)00084-2
20 Cao J Y, Yang Y G, Fang Z G, et al. Failure behavior of fresh water tank coating in different water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 209
曹京宜, 杨延格, 方志刚 等. 淡水舱涂层在不同水环境中的失效行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 209
doi: 10.11902/1005.4537.2021.008
21 Chen L, Liu H, Liu Z Q, et al. Thermal conductivity and anti-corrosion of epoxy resin based composite coatings doped with graphene and graphene oxide [J]. Composites, 2021, 5C: 100124
22 Kinsella E M, Mayne J E O. Ionic conduction in polymer films I. Influence of electrolyte on resistance [J]. Br. Polym. J., 1969, 1: 173
23 Mayne J E O, Scantlebury J D. Ionic conduction in polymer films: II. Inhomogeneous structure of varnish films [J]. Br. Polym. J., 1970, 2: 240
24 Jamali S S, Mills D J. Studying inhomogeneity of organic coatings using wire beam multielectrode and physicomechanical testing [J]. Corros. Eng. Sci. Technol., 2013, 48: 489
25 Van der Weijde D H. Impedance spectroscopy and organic barrier coatings; (im)possibilities [D]. Delft University of Technology, 1996
26 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
曹京宜, 王智峤, 李 亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
doi: 10.11902/1005.4537.2019.224
27 Crank J. The Mathematics of Diffusion [M]. Oxford: Clarendon Press, 1975
28 Jeffcoate C S, Wocken T L, Bierwagen G P. Electrochemical assessment of spray-applied thermoplastic coating barrier properties [J]. J. Mater. Eng. Perform., 1997, 6: 417
[1] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[2] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[3] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[4] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[5] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[6] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] CAO Jingyi, LI Jing, YIN Wenchang, MENG Fandi, LIU Li. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[8] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[9] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[12] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[15] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
No Suggested Reading articles found!