|
|
Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters |
LING Dong1, HE Kun1, YU Liang2, DONG Lijin1( ), ZHANG Huali3, LI Yufei3, WANG Qinying1, ZHANG Zhi4 |
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.Southwest Pipeline Company Lanzhou–Chengdu–Chongqing Oil Transmission Branch, Chengdu 610000, China 3.Engineering Technology Research Institute, Southwest Oil & Gasfield Company, CNPC, Deyang 618300, China 4.School of Petroleum and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China |
|
Cite this article:
LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 303-311.
|
Abstract The pitting growth behavior of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters was comparatively assessed via immersion corrosion test and finit element simulation, focusing on the effect of corrosion time, temperature and partial pressure of CO2 on pitting corrosion. The results show that the pitting depth of super 13Cr stainless steel after high-temperature and high-pressure corrosion tests is consistent with that of finite element simulation, and the average pitting depth increases with the increase of immersion time, temperature and CO2 partial pressure. The finite element simulation shows that the interior of the pit is acidified due to cationic hydrolysis, and the pH value decreases with the decrease of temperature and the increase of CO2 partial pressure. In addition, Fe2+ concentration inside the pit increases with the increase of corrosion time and temperature while the partial pressure of CO2 has little effect.
|
Received: 27 March 2023
32134.14.1005.4537.2023.088
|
|
Fund: National Natural Science Foundation of China(52001264);Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX040100) |
Corresponding Authors:
DONG Lijin, E-mail: ljdong89@163.com
|
1 |
Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
|
|
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
|
2 |
Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide[J]. Mater. Prot., 2012, 45(6): 58
|
|
张国超, 张 涵, 牛 坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能[J]. 材料保护, 2012, 45(6): 58
|
3 |
Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of Super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment[J]. Hot Work. Technol., 2012, 41(10): 71
|
|
刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究[J]. 热加工工艺, 2012, 41(10): 71
|
4 |
Lü X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
|
|
吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207
|
5 |
Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
|
|
张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究[J]. 宝钢技术, 2020, (1): 7
|
6 |
Scheiner S, Hellmich C. Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel[J]. Comput. Methods Appl. Mech. Eng., 2009, 198: 2898
doi: 10.1016/j.cma.2009.04.012
|
7 |
Bartosik Ł, Di Caprio D, Stafiej J. Cellular automata approach to corrosion and passivity phenomena[J]. Pure Appl. Chem., 2012, 85: 247
doi: 10.1351/PAC-CON-12-02-01
|
8 |
Taleb A, Vautrin-Ul C, Mendy H, et al. Mesoscopic modeling of corrosion processes: pitting morphology evolution[A]. DegiorgiVG, BrebbiaCA, AdeyRA. Simulation of Electrochemical Processes II[M]. WIT Press, 2007, 54: 13
|
9 |
Malki B, Baroux B. Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
doi: 10.1016/j.corsci.2004.05.004
|
10 |
Liu J, Li Z L, Hou L, et al. Model-building for computational simulation of multi-pit corrosion process with cellular automata[J]. Chem. Eng. Mach., 2011, 38: 206
|
|
刘 静, 李自力, 侯 蕾 等. 元胞自动机方法模拟材料点蚀过程的建模过程[J]. 化工机械, 2011, 38: 206
|
11 |
Munn R, General A. Application of electrochemical principles to three-dimensional multi-metallic underwater structures[J]. US Naval Underwater Systems Center Technical Memorandum., 1977: 771183
|
12 |
Alkire R, Bergh T, Sani R L, et al. Predicting electrode shape change with use of finite element methods[J]. J. Electrochem. Soc., 1981, 125: 1981
doi: 10.1149/1.2131340
|
13 |
Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments[J]. Corros. Sci., 2010, 52: 1728
doi: 10.1016/j.corsci.2010.01.010
|
14 |
Guo M L, Xing P G, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments[J]. J. Iron Steel Res. Int., 2004, 11: 47
|
15 |
Malki B, Souier T, Baroux B. Influence of the alloying elements on pitting corrosion of stainless steels: A modeling approach[J]. J. Electrochem. Soc., 2008, 155: C583
doi: 10.1149/1.2996565
|
16 |
Fuller T F, Newman J. Experimental determination of the transport number of water in nafion 117 membrane[J]. J. Electrochem. Soc., 1992, 139: 1332
doi: 10.1149/1.2069407
|
17 |
Li T S, Wu J, Guo X L, et al. Activation energy of metal dissolution in local pit environments[J]. Corros. Sci., 2021, 193: 109901
doi: 10.1016/j.corsci.2021.109901
|
18 |
Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification[J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
|
19 |
Wang W, Sun H Y, Sun L J, et al. Numerical simulation for crevice corrosion of 304 stainless steel in sodium chloride solution[J]. Chem. Res. Chin. Univ., 2010, 26: 822
|
20 |
Nesic S, Sun W. 2.25-Corrosion in acid gas solutions[J]. Shreir's Corros., 2010, 2: 1270
|
21 |
Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
|
22 |
Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
|
|
潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42: 752
|
23 |
Li D P, Zhang L, Shi F X, et al. Effect of temperature on the corrosion behavior of 13Cr stainless steel under a high CO2 partial pressure environment[J]. Chin. J. Eng., 2015, 37: 1463
|
|
李大朋, 张 雷, 石凤仙 等. 温度对13Cr不锈钢在高CO2分压环境中腐蚀行为的影响[J]. 工程科学学报, 2015, 37: 1463
|
24 |
Ma Z H. Evaluation of pitting corrosion performance of 13Cr series martensitic stainless steels[J]. Corros. Prot., 2013, 34: 819
|
|
马朝晖. 13Cr系列马氏体不锈钢的点蚀性能评价[J]. 腐蚀与防护, 2013, 34: 819
|
25 |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
|
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
|
26 |
Lü X H, Zhao G X, Fan Z H, et al. Effects of Cl- Concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure[J]. Mater. Prot., 2004, 37(6): 34
|
|
吕祥鸿, 赵国仙, 樊治海 等. 高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响[J]. 材料保护, 2004, 37(6): 34
|
27 |
Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry[J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
|
28 |
Pots B F M. Mechanistic models for the prediction of CO2 corrosion rates under multi-phase flow conditions[R]. Houston: NACE Internation, 1995
|
29 |
Deng B, Jiang Y M, Hao Y W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
|
|
邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|