Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 303-311    DOI: 10.11902/1005.4537.2023.088
Current Issue | Archive | Adv Search |
Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters
LING Dong1, HE Kun1, YU Liang2, DONG Lijin1(), ZHANG Huali3, LI Yufei3, WANG Qinying1, ZHANG Zhi4
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.Southwest Pipeline Company Lanzhou–Chengdu–Chongqing Oil Transmission Branch, Chengdu 610000, China
3.Engineering Technology Research Institute, Southwest Oil & Gasfield Company, CNPC, Deyang 618300, China
4.School of Petroleum and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
Cite this article: 

LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 303-311.

Download:  HTML  PDF(5477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting growth behavior of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters was comparatively assessed via immersion corrosion test and finit element simulation, focusing on the effect of corrosion time, temperature and partial pressure of CO2 on pitting corrosion. The results show that the pitting depth of super 13Cr stainless steel after high-temperature and high-pressure corrosion tests is consistent with that of finite element simulation, and the average pitting depth increases with the increase of immersion time, temperature and CO2 partial pressure. The finite element simulation shows that the interior of the pit is acidified due to cationic hydrolysis, and the pH value decreases with the decrease of temperature and the increase of CO2 partial pressure. In addition, Fe2+ concentration inside the pit increases with the increase of corrosion time and temperature while the partial pressure of CO2 has little effect.

Key words:  super 13Cr stainless steel      pitting      finite element simulation      high temperature and pressure     
Received:  27 March 2023      32134.14.1005.4537.2023.088
ZTFLH:  TG171  
Fund: National Natural Science Foundation of China(52001264);Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX040100)
Corresponding Authors:  DONG Lijin, E-mail: ljdong89@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.088     OR     https://www.jcscp.org/EN/Y2024/V44/I2/303

Serial number

Time

d

Temperature

oC

CO2 partial pressure

MPa

120952.8
240952.8
360952.8
420602.8
5201502.8
620950.1
720951.0
Table 1  Experimental parameters of immersion test
Fig.1  Finite element model and mesh division: (a) two dimensional global model, (b) inner boundary of pit, (c) the whole grid, (d) locally refined grid
Reaction mechanismCurrent density equationInitial potential
V
Initial urrent density[19]
A·m-2
FeFe2++2e-IFe=IFe0×e0.735×EPOL-EFe-E'RT×CH+CH+ref×eHR1Tref-1T-0.6842.7 × 10-11
CrCr3++3e-ICr=ICr0×e0.735×EPOL-ECr-E'RT×CH+CH+ref×eHR1Tref-1T-0.9881.7 × 10-9
H++e-12H2Icorr=IH_0×e(EPOL-EH-E')/RT×(CH+CH+ref)-0.2242.0 × 10-4
H2O+e-12H2+OH-Icorr=IH2O_0×e(EPOL-EH2O-E')/RT-1.0728.0 × 10-10
Table 2  Initial potential and current density of pit
ProjectChemical reactionEquilibrium constant
CO2 solubilityCO2(g)CO2(aq)KH=CCO2/φPCO2
Hydration reactionCO2(aq)+H2OH2CO3K=CH2CO3/CCO2

H2CO3

dissociation

H2CO3H++HCO3-K1=CH+CHCO3-CH2CO3
HCO3- dissociationHCO3-H++CO32-K2=CH+CCO32-CHCO3-
Table 3  Typical chemical reactions and equilibrium constants in CO2 environment[20]
Equilibrium
coefficient
60oC95oC150oC
KH1.17 × 10-27.7 1× 10-33.72 × 10-4
KH, f2.37 × 10-62.00 × 10-12.49 × 105
K14.96 × 10-44.09 × 10-42.97 × 10-4
K1, f9.52 × 1075.39 × 1084.51 × 109
K27.98 × 10-98.46 × 10-95.70 × 10-9
K2, f1.00 × 1091.00 × 1091.00 × 109
Tabel 4  Equilibrium coefficient at different temperatures
Species concentration
mol·L-1
60oC95oC150oC
CO2 concentration3.14 × 10-12.06 × 10-19.95 × 10-3
H2CO3 concentration8.10 × 10-45.33 × 10-42.57 × 10-5
HCO3- concentration4.20 × 10-44.20 × 10-45.77 × 10-5
CO32- concentration3.51 × 10-94.91 × 10-92.49 × 10-9
pH3.023.143.88
Table 5  Initial conditions of bulk solution boundary under different temperatures
Species concentration
mol·L-1
0.1 MPa1 MPa2.8 MPa
CO2 concentration7.70 × 10-37.59 × 10-22.06 × 10-1
H2CO3 concentration1.99 × 10-51.96 × 10-45.33 × 10-4
HCO3- concentration4.46 × 10-51.49 × 10-44.20 × 10-4
CO32- concentration2.07 × 10-92.35 × 10-94.91 × 10-9
pH3.743.273.14
Table 6  Initial conditions of bulk solution boundary under different pressures
Fig.2  Typical pitting morphology after immersion in high temperature high pressure water at 2.8 MPa CO2/95oC for 20 d: (a) surface topography, (b-d) three dimensional topography
Fig.3  Mean pitting depth under different immersion time (a), temperature (b) and CO2 partial pressure (c)
Fig.4  Comparing the simulated pitting depth and experimental results under different immersion time (a), temperature (b) and CO2 partial pressure (c)
Fig.5  Evolution of pH at the bottom of pit
Fig.6  Distribution of pH along the depth direction of the pit under different temperature (a) and CO2 partial pressure (b)
Fig.7  Effect of immersion time, temperature and CO2 partial pressure on the distribution of ion concentration along the depth direction of the pit: (a) concentration of Fe2+ after immersion for 20 d at 150℃, (b) effect of immersion time, (c) effect of temperature, (d) effect of CO2 partial pressure
1 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
2 Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide[J]. Mater. Prot., 2012, 45(6): 58
张国超, 张 涵, 牛 坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能[J]. 材料保护, 2012, 45(6): 58
3 Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of Super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment[J]. Hot Work. Technol., 2012, 41(10): 71
刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究[J]. 热加工工艺, 2012, 41(10): 71
4 Lü X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207
5 Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究[J]. 宝钢技术, 2020, (1): 7
6 Scheiner S, Hellmich C. Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel[J]. Comput. Methods Appl. Mech. Eng., 2009, 198: 2898
doi: 10.1016/j.cma.2009.04.012
7 Bartosik Ł, Di Caprio D, Stafiej J. Cellular automata approach to corrosion and passivity phenomena[J]. Pure Appl. Chem., 2012, 85: 247
doi: 10.1351/PAC-CON-12-02-01
8 Taleb A, Vautrin-Ul C, Mendy H, et al. Mesoscopic modeling of corrosion processes: pitting morphology evolution[A]. DegiorgiVG, BrebbiaCA, AdeyRA. Simulation of Electrochemical Processes II[M]. WIT Press, 2007, 54: 13
9 Malki B, Baroux B. Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
doi: 10.1016/j.corsci.2004.05.004
10 Liu J, Li Z L, Hou L, et al. Model-building for computational simulation of multi-pit corrosion process with cellular automata[J]. Chem. Eng. Mach., 2011, 38: 206
刘 静, 李自力, 侯 蕾 等. 元胞自动机方法模拟材料点蚀过程的建模过程[J]. 化工机械, 2011, 38: 206
11 Munn R, General A. Application of electrochemical principles to three-dimensional multi-metallic underwater structures[J]. US Naval Underwater Systems Center Technical Memorandum., 1977: 771183
12 Alkire R, Bergh T, Sani R L, et al. Predicting electrode shape change with use of finite element methods[J]. J. Electrochem. Soc., 1981, 125: 1981
doi: 10.1149/1.2131340
13 Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments[J]. Corros. Sci., 2010, 52: 1728
doi: 10.1016/j.corsci.2010.01.010
14 Guo M L, Xing P G, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments[J]. J. Iron Steel Res. Int., 2004, 11: 47
15 Malki B, Souier T, Baroux B. Influence of the alloying elements on pitting corrosion of stainless steels: A modeling approach[J]. J. Electrochem. Soc., 2008, 155: C583
doi: 10.1149/1.2996565
16 Fuller T F, Newman J. Experimental determination of the transport number of water in nafion 117 membrane[J]. J. Electrochem. Soc., 1992, 139: 1332
doi: 10.1149/1.2069407
17 Li T S, Wu J, Guo X L, et al. Activation energy of metal dissolution in local pit environments[J]. Corros. Sci., 2021, 193: 109901
doi: 10.1016/j.corsci.2021.109901
18 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification[J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
19 Wang W, Sun H Y, Sun L J, et al. Numerical simulation for crevice corrosion of 304 stainless steel in sodium chloride solution[J]. Chem. Res. Chin. Univ., 2010, 26: 822
20 Nesic S, Sun W. 2.25-Corrosion in acid gas solutions[J]. Shreir's Corros., 2010, 2: 1270
21 Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
22 Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42: 752
23 Li D P, Zhang L, Shi F X, et al. Effect of temperature on the corrosion behavior of 13Cr stainless steel under a high CO2 partial pressure environment[J]. Chin. J. Eng., 2015, 37: 1463
李大朋, 张 雷, 石凤仙 等. 温度对13Cr不锈钢在高CO2分压环境中腐蚀行为的影响[J]. 工程科学学报, 2015, 37: 1463
24 Ma Z H. Evaluation of pitting corrosion performance of 13Cr series martensitic stainless steels[J]. Corros. Prot., 2013, 34: 819
马朝晖. 13Cr系列马氏体不锈钢的点蚀性能评价[J]. 腐蚀与防护, 2013, 34: 819
25 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
26 Lü X H, Zhao G X, Fan Z H, et al. Effects of Cl- Concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure[J]. Mater. Prot., 2004, 37(6): 34
吕祥鸿, 赵国仙, 樊治海 等. 高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响[J]. 材料保护, 2004, 37(6): 34
27 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry[J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
28 Pots B F M. Mechanistic models for the prediction of CO2 corrosion rates under multi-phase flow conditions[R]. Houston: NACE Internation, 1995
29 Deng B, Jiang Y M, Hao Y W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30
[1] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[4] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[5] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[6] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[7] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[8] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[9] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[10] GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[11] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[12] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[13] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[14] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[15] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
No Suggested Reading articles found!