Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1022-1030    DOI: 10.11902/1005.4537.2022.330
Current Issue | Archive | Adv Search |
Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere
YANG Haifeng1, YUAN Zhizhong1(), LI Jian2, ZHOU Naipeng2, GAO Feng2
1.School of Material Science and Technology, Jiangsu University, Zhenjiang 212013, China
2.Division of Engineering Steel, Central Iron & Steel Research Institute, Beijing 100081, China
Download:  HTML  PDF(17152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Cu-bearing aged weldable steels with varied Ni levels of 2.5Ni, 2.0Ni and 1.5Ni was assessed via an indoor dry-wet alternating accelerated test, aiming to simulate the tropical marine atmospheric environment, by means of mass loss method, scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and electrochemical test methods. The findings demonstrate that in the simulated tropical marine atmospheric environment, the corrosion rates of the three experimental steels increase initially, then decrease and finally remain steady. Their corrosion rate decreases with increasing Ni concentration. The steel with 2.5Ni corrodes at a rate that is 25% less than that of 1.5Ni. The rust layer is rich mostly in Ni and Cu. The addition of Ni to the steel will result in the formation of NiFe2O4 in the rust layer, which favors the conversion of γ-FeOOH phase to α-FeOOH phase, thus increases the compactness of the rust layer. The higher the Ni content, the more obvious the effect, thereby, the better the protectiveness of the rust layer. The propensity for the free-corrosion potential and the resistance of the rust layer increase with the increasing Ni concentration. Therewith the rust layer can effectively inhibit the anodic dissolution and the transfer of charged particles within the rust layer.

Key words:  tropical marine atmospheric environment      Copper Aging Weldable Steel      Ni      rust layer      corrosion resistance     
Received:  25 October 2022      32134.14.1005.4537.2022.330
ZTFLH:  TG172  
Corresponding Authors:  YUAN Zhizhong, E-mail: yzzjs@ujs.edu.cn   

Cite this article: 

YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1022-1030.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.330     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1022

SampleCSiMnNiCuFe
2.5Ni0.0510.170.622.531.18Bal.
2.0Ni0.0330.180.642.061.16Bal.
1.5Ni0.0330.220.571.511.12Bal.
Table 1  Chemical compositions of three test steels
Fig.1  Variations of corrosion rate (a) and thickness loss (b) of 2.5Ni, 2.0Ni and 1.5Ni steels with exposure time
Fig.2  Macrographs of the rust layers formed on 2.5Ni (a1-a5), 2.0Ni (b1-b5) and 1.5Ni (c1-c5) steels after exposure for 24 h (a1-c1), 48 h (a2-c2), 96 h (a3-c3), 168 h (a4-c4) and 360 h (a5-c5)
Fig.3  Corrosion products of 2.5Ni (a1, a2), 2.0Ni (b1, b2) and 1.5Ni (c1, c2) steels after 24 h (a1-c1) and 168 h (a2-c2) cyclic wet-dry immersion corrosion
Fig.4  General image (a) and high-magnification images of the outer (b, c) and inner (d, e) layers of the rust layer formed on 2.0Ni steel after 168 h corrosion
Fig.5  Cross-sectional morphologies and EDS mappings of 2.5Ni (a), 2.0Ni (b) and 1.5Ni (c) steels after 360 h corrosion
Fig.6  XRD patterns of corrosion products of 2.5Ni, 2.0Ni and 1.5Ni steels after 360 h corrosion
Fig.7  Proportion of corrosion products of 2.5Ni, 2.0Ni and 1.5Ni steels after 360 h corrosion
Fig.8  XPS fine peaks of Ni 2p3/2 (a) and Cu 2p3/2 (b) in the corrosion products of 2.5Ni, 2.0Ni and 1.5Ni steels
Fig.9  Polarization curves of three kinds of test steels after exposure for 168 h (a) and 360 h (b)
Steel168 h360 h

Ecorr

mV

IcorrμA·cm-2

Ecorr

mV

IcorrμA·cm-2
2.5Ni-0.3750.377-0.3330.285
2.0Ni-0.4020.500-0.3510.310
1.5Ni-0.4200.601-0.3890.351
Table 2  Fitting parameters of the linear polarization curves
Fig.10  Nyquist (a, c) and Bode (b, d) plots of 2.5Ni, 2.0Ni and 1.5Ni steels after exposure for 168 h (a, b) and 360 h (c, d), and corresponding equivalent circuit (e)
Fig.11  Fitting electrochemical parameters of EIS of 2.5Ni, 2.0Ni and 1.5Ni steels
1 Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
2 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
3 Yang J W, Cai N, Jiang S, et al. Corrosion behavior of Ni, Cr-containing corrosion resistant steel in high temperature and high Cl- environment [J]. Corros. Prot., 2022, 43(4): 13
杨建炜, 蔡 宁, 姜 杉 等. 高温高Cl-环境中含Ni、Cr耐蚀钢的腐蚀行为 [J]. 腐蚀与防护, 2022, 43(4): 13
4 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
赵 伊, 曹京宜, 方志刚 等. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
5 Wang W J. The application status and perspective of alloys for high performance and advanced naval vessels [J]. Mater. Rep., 2013, 27(7): 98
王文杰. 高性能先进舰船用合金材料的应用现状及展望 [J]. 材料导报, 2013, 27(7): 98
6 Yang C F, Zhang Y Q. Effect of Cu content on mechanical properties of low carbon HSLA steel [J]. Spec. Steel, 1999, 20(1): 27
杨才福, 张永权. 铜含量对低碳HSLA钢力学性能的影响 [J]. 特殊钢, 1999, 20(1): 27
7 Hwang G C, Lee S, Yoo J Y, et al. Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels [J]. Mater. Sci. Eng., 1998, 252A: 256
8 Yang C F, Su H, Li L, et al. Enrichment of Cu, Ni in surface oxidation layer of copper-bearing age-hardening steel [J]. Iron Steel, 2007, 42(4): 57
杨才福, 苏 航, 李 丽 等. Cu、Ni在含铜时效钢表面氧化层中的富集 [J]. 钢铁, 2007, 42(4): 57
9 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
10 Yin L, Sampson E, Nakano J, et al. The effects of Nickel/Tin ratio on Cu induced surface hot shortness in Fe [J]. Oxid. Met., 2011, 76: 367
doi: 10.1007/s11085-011-9261-7
11 Zhao X M, Kang Y L, Han Q H. Influence of Mo on dynamic continuous cooling transformation of 1000 MPa cold rolled dual phase steel [J]. J. Iron Steel Res. Int., 2011, 18(suppl. 1): 296
12 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
13 Zhang P H, Li X C, Tong H T, et al. Corrosion behavior of 10CrNi3MoV steel in deep-sea environment of Western Pacific [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1075
张彭辉, 李显超, 仝宏涛 等. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1075
doi: 10.11902/1005.4537.2021.328
14 Feng X G, Lu X Y, Zuo Y, et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution [J]. Corros. Sci., 2016, 103: 223
doi: 10.1016/j.corsci.2015.11.022
15 Zhang T Y, Liu W, Chen L J, et al. On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations [J]. Corros. Sci., 2021, 192: 109851
doi: 10.1016/j.corsci.2021.109851
16 Fan Y M. Corrosion behavior and mechanism of Ni-Mo low alloy steels in tropical marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2021
范玥铭. Ni-Mo低合金钢热带海洋大气环境腐蚀行为和机理研究 [D]. 北京: 北京科技大学, 2021
17 Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
doi: 10.1007/s11665-017-3043-6
18 Cheng D Y, Zhao J B, Liu B, et al. Corrosion Behavior of high nickel and conventional weathering steels exposed to a harsh marine atmospheric environment at Maldives [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 29
程多云, 赵晋斌, 刘 波 等. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 29
doi: 10.11902/1005.4537.2018.125
19 Jin S, Liu C M, Lin X, et al. Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution [J]. Mater. Corros., 2015, 66: 1077
20 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4%-Cu 0.5%-Cr 0.5% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
21 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
22 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
23 Wu W, Hao W K, Liu Z Y, et al. Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values [J]. J. Mater. Eng. Perform., 2015, 24: 4636
doi: 10.1007/s11665-015-1781-x
24 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
25 Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
doi: 10.1016/j.corsci.2012.09.020
26 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
27 Jia J H, Wu W, Cheng X Q, et al. Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test [J]. Constr. Build. Mater., 2020, 245: 118463
doi: 10.1016/j.conbuildmat.2020.118463
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[3] WANG Kai, LI Chenpei, LU Jinling, WANG Zhenjiang, WANG Wei. Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
[4] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[5] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[6] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[7] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[8] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[9] QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan. Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System[J]. 中国腐蚀与防护学报, 2023, 43(4): 821-827.
[10] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[11] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[12] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[13] CHEN Huimin, WANG Shuaixing, ZHANG Qi, ZHAN Zhongwei, DU Nan. Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[14] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[15] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
No Suggested Reading articles found!