Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1140-1144    DOI: 10.11902/1005.4537.2022.388
Current Issue | Archive | Adv Search |
Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere
HU Jiezhen1, LAN Wenjie1, DENG Peichang2, WU Jingquan1(), ZENG Junhao1
1.College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2.College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
Download:  HTML  PDF(6690KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The exposure tests of E690 steel were carried out in tropical marine atmosphere of high temperature, high humidity and high salt at Zhanjiang atmospheric corrosion test station for 15, 30, 90, 180 and 360 d. Meanwhile, the initial corrosion behavior of E690 steel in tropical marine atmosphere was studied by mass loss method and electrochemical measurement, combined with macroscopic and microscopic corrosion morphology observation and corrosion product analysis. The results showed that the corrosion rate of E690 steel was higher at the beginning, and then decreased with the prolongation of exposure time. After 90 d of exposure, the corrosion rate changed little and the corrosion tended to be stable. After 90 d of exposure, Cr has diffused into the rust scale, thus improving the compactness of the rust scale. The participation of Ni promotes the transformation of γ-FeOOH to α-FeOOH, which then improved the corrosion resistance of E690 steel and reduced its corrosion rate.

Key words:  E690 steel      tropical marine atmosphere      corrosion      rust layer     
Received:  07 December 2022      32134.14.1005.4537.2022.388
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51801033);Natural Science Foundation of Guangdong Province(2021A1515012129);Science & Technology Development Fundation of Zhanjiang(2022A01029)
Corresponding Authors:  WU Jingquan, E-mail: lengfeng402@163.com   

Cite this article: 

HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1140-1144.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.388     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1140

Fig.1  Corrosion rate curve of E690 steel with exposure time
Fig.2  Surface macroscopic morphologies of E690 steel after exposure to sunlight for 15 d (a), 30 d (b), 90 d (c), 180 d (d) and 360 d (e)
Fig.3  Surface microscopic morphologies of E690 steel after exposure to sunlight for 15 d (a), 30 d (b), 90 d (c),180 d (d) and 360 d (e)
Fig.4  Corrosion morphologies (a) and element distribution (b-e) of the cross section of E690 steel after exposed for 90 d
Fig.5  Corrosion morphologies (a) and element distri-bution (b-e) of the cross section of E690 steel after exposed for 360 d
Fig.6  XRD spectra of rust layer of E690 steel after exposed for different time
Fig.7  Polarization curves of E690 steel after exposed for different time
Exposure time / dEcorr / mVIcorr / μA
15-475.1011.97
30-380.755.223
90-327.642.215
180-337.692.827
360-294.940.8578
Table 1  Corrosion potential and current of E690 steel after exposed for different time
Fig.8  Electrochemical impedance spectroscopy and equivalent circuit of E690 steel at different exposure periods
Fig.9  Equivalent circuit for EIS test
Exposure time / d

Rs

Ω·cm2

Rf

Ω·cm2

Rct

Ω·cm2

158.3326.7465
307.9631.2874
907.1459.62766
1807.2760.12998
3607.0157.22831
Table 2  Fitting results of EIS tests
1 Ma H C, Du C W, Liu Z Y, et al. Comparison research on corrosion behavior of E36 and E690 steel in simulated seawater [J]. Corros. Sci. Prot. Technol., 2016, 28: 27
马宏驰, 杜翠薇, 刘智勇 等. E36和E690钢在模拟海水中的腐蚀行为对比研究 [J]. 腐蚀科学与防护技术, 2016, 28: 27
2 Xiong X Q, Xiong W M, Chen Y J, et al. Trail on high strength marine structure steel grade E690 [J]. Jiangxi Metall., 2012, 32(6): 21
熊小强, 熊文名, 陈英俊 等. E690级海洋结构特厚高强度钢板的试制 [J]. 江西冶金, 2012, 32(6): 21
3 Ma H C, Du C W, Liu Z Y, et al. Comparative study of stress corrosion cracking behaviors of typical microstructures of weld heat-affected zones of E690 high-strength low-alloy steel in SO2-containing marine environment [J]. Acta Metall. Sin., 2019, 55: 469
马宏驰, 杜翠薇, 刘智勇 等. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究 [J]. 金属学报, 2019, 55: 469
4 Ma H C, Liu Z Y, Du C W, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere [J]. J. Mech. Eng., 2016, 52(16): 33
马宏驰, 刘智勇, 杜翠薇 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响 [J]. 机械工程学报, 2016, 52(16): 33
doi: 10.3901/JME.2016.16.033
5 Fan Y, Yang W X, Wang J, et al. Corrosion behavior of Q690qE steel in a simulated coastal-industrial environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 669
范 益, 杨文秀, 王 军 等. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 669
6 Cheng P, Liu J, Huang F, et al. Corrosion behavior of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 563
程 鹏, 刘 静, 黄 峰 等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 563
7 Wu B, Cai Q W, Zhang J, et al. Corrosion resistance of E690 platform steel in simulation marine atmosphere [J]. Heat Treat. Met., 2011, 36(3): 26
武 博, 蔡庆伍, 张 杰 等. E690平台用钢耐海洋大气腐蚀模拟 [J]. 金属热处理, 2011, 36(3): 26
8 Du X J, He Y Z. Internal friction analysis on austenitizing process of E690 steel [J]. Heat Treat. Met., 2020, 45(8): 12
杜晓洁, 何宜柱. E690钢奥氏体化过程的内耗分析 [J]. 金属热处理, 2020, 45(8): 12
9 Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform [J]. Chin. J. Mater. Res., 2016, 30: 241
doi: 10.11901/1005.3093.2015.507
邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究 [J]. 材料研究学报, 2016, 30: 241
10 Zhang T, Liu J, Huang F, et al. Effect of alternating stress frequency on corrosion electrochemical behavior of E690 steel in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 226
张 腾, 刘 静, 黄 峰 等. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 226
11 Chen M D, Zhang F, Liu Z Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater [J]. Acta Metall. Sin., 2018, 54: 1311
doi: 10.11900/0412.1961.2017.00521
陈闽东, 张 帆, 刘智勇 等. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响 [J]. 金属学报, 2018, 54: 1311
doi: 10.11900/0412.1961.2017.00521
12 Zhang J, Cai Q W, Wu H B, et al. Mechanical properties and marine atmosphere corrosion behavior of E690 ocean platform steel [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 657
张 杰, 蔡庆伍, 武会宾 等. E690海洋平台用钢力学性能和海洋大气腐蚀行为 [J]. 北京科技大学学报, 2012, 34: 657
13 Yang Y, Fan Y, Zhang W L. Study on corrosion resistance of E690 steel in industry ambient environment [J]. Corros. Prot. Petrochem. Ind., 2016, 33(2): 1
杨 英, 范 益, 张万灵. E690在模拟工业大气环境下的腐蚀性能研究 [J]. 石油化工腐蚀与防护, 2016, 33(2): 1
14 Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
肖 葵, 董超芳, 李晓刚 等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53
15 Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
doi: 10.1016/j.corsci.2013.06.053
16 Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil [J]. J. Mater. Eng., 2010, (8): 24
聂向晖, 李云龙, 李记科 等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析 [J]. 材料工程, 2010, (8): 24
17 Fang H S, Yang Z G, Yang J B, et al. Research on bainite transformation in steels [J]. Acta Metall. Sin., 2005, 41: 449
方鸿生, 杨志刚, 杨金波 等. 钢中贝氏体相变机制的研究 [J]. 金属学报, 2005, 41: 449
18 Wang L W, Du C W, Liu Z Y, et al. Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel [J]. Acta Metall. Sin., 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
王力伟, 杜翠薇, 刘智勇 等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响 [J]. 金属学报, 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[6] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[12] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[13] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[14] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
No Suggested Reading articles found!