Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 821-827    DOI: 10.11902/1005.4537.2022.287
Current Issue | Archive | Adv Search |
Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System
QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan()
Sino-German Joint Research Lab of Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Science of Shaanxi Province, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(1691KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to the urgent need of aviation industry for microbial control of the fuel system of aircraft, it is imperative to establish a safe and efficient microbial control strategy for the fuel system to ensure the safe operation of aircraft. Water is generally considered to be an undesirable substance in the fuel system, which may lead to microbial contamination. The novel antibacterial strategies that can turn water into things of value with high disinfection efficiency have been urgently needed for the fuel system. This review surveys the edged technologies which may provide the design principle and important experimental guidance of "active" antibacterial functional coating. Accordingly, two electron sources include the extracellular electron transfer and the galvanic corrosion on the coated metals may become the key to spontaneous microbial-control coating.

Key words:  aircraft fuel system      microbial contamination      corrosion      micro-galvanic effect      extracellular electron transfer     
Received:  16 September 2022      32134.14.1005.4537.2022.287
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(22071196);National Natural Science Foundation of China(52001255);National Natural Science Foundation of China(22007078);Key R&D Program of Shaanxi Province(2021KWZ-18);Aeronautical Science Foundation of China(ASFC-2020Z061053001)
Corresponding Authors:  GE Yan, E-mail: ge@nwpu.edu.cn   

Cite this article: 

QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan. Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 821-827.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.287     OR     https://www.jcscp.org/EN/Y2023/V43/I4/821

Fig.1  Schematic diagram of design principle of micro-galvanic effect-based bimetallic coating for spontaneous antimicrobial control in aircraft fuel system[53]
1 Zhao A J, Shi G S, Han X. Research on fuel microbial contamination of military aircraft [J]. Aircraft Des., 2017, 37 (5): 48
赵安家, 施广生, 韩 笑. 军机燃油微生物污染的研究 [J]. 飞机设计, 2017, 37(5): 48
2 Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
3 Hu D, Zeng J, Wu S S, et al. A survey of microbial contamination in aviation fuel from aircraft fuel tanks [J]. Folia Microbiol., 2020, 65: 371
doi: 10.1007/s12223-019-00744-w pmid: 31392506
4 Baena-Zambrana S, Repetto S L, Lawson C P, et al. Behaviour of water in jet fuel - A literature review [J]. Prog. Aerosp. Sci., 2013, 60: 35
doi: 10.1016/j.paerosci.2012.12.001
5 Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1051
doi: 10.11902/1005.4537.2021.273
6 Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
7 Standard test method for adenosine triphosphate (ATP) content of microorganisms in fuel, fuel/water mixtures and fuel associated water [S]. ASTM International, 2008
8 He Y J, Zhang T S, Wang H T, et al. Research progress of biocides for microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 748
何勇君, 张天遂, 王海涛 等. 微生物腐蚀杀菌剂研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 748
doi: 10.11902/1005.4537.2020.167
9 Zhu H L, Lu X M, Li X F, et al. Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 51
朱海林, 陆小猛, 李晓芬 等. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 51
doi: 10.11902/1005.4537.2021.082
10 Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it [J]. Nat. Nanotechnol., 2018, 13: 65
doi: 10.1038/s41565-017-0013-y pmid: 29203912
11 Hu D Z, Han J, Zhang R, et al. Control of microbial contamination in aircraft fuel system [J]. Adv. Microbiol., 2018, 7: 131
doi: 10.12677/AMB.2018.74016
12 Raikos V, Vamvakas S S, Sevastos D, et al. Water content, temperature and biocide effects on the growth kinetics of bacteria isolated from JP-8 aviation fuel storage tanks [J]. Fuel, 2012, 93: 559
doi: 10.1016/j.fuel.2011.10.028
13 Li Y. China issued the relevant standards for oil supply engineering of civil transport airports [J]. China Plant Eng., 2017, (5): 6
李 阳. 我国发布民用运输机场供油工程相关标准 [J]. 中国设备工程, 2017, (5): 6
14 Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究 [J]. 中国腐蚀与防护学报, 2022, 42: 135
15 Cai S, Zhang S, Ni Y W, et al. Study on antibacterial performance of antistatic and antibacterial corrosion protective coatings for linings of fuel storage tanks [J]. Paint Coat. Ind., 2012, 42(10): 25
蔡 森, 张 松, 倪余伟 等. 油舱内壁防霉导静电防腐蚀涂料抗菌性能研究 [J]. 涂料工业, 2012, 42(10): 25
16 Zhao X, Zhu J J, Li M, et al. Domestic application and development status of anti-bacterial agent [J]. Mater. Rep., 2016, 30(7): 68
赵 欣, 朱健健, 李 梦 等. 我国抗菌剂的应用与发展现状 [J]. 材料导报, 2016, 30(7): 68
17 Rizzello L, Pompa P P. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines [J]. Chem. Soc. Rev., 2014, 43: 1501
doi: 10.1039/c3cs60218d pmid: 24292075
18 Azzam E M S, Sami R M, Kandile N G. Activity inhibition of sulfate reducing bacteria using some cationic thiol surfactants and their nanostructures [J]. Am. J. Biochem., 2012, 2: 29
doi: 10.5923/j.ajb.20120203.03
19 Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066 pmid: 20970183
20 Ponomarev V A, Sukhorukova I V, Sheveyko A N, et al. Antibacterial performance of TiCaPCON films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions [J]. ACS Appl. Mater. Interfaces, 2018, 10: 24406
doi: 10.1021/acsami.8b06671
21 Cao H L, Tang K W, Liu X Y. Bifunctional galvanics mediated selective toxicity on titanium [J]. Mater. Horiz., 2018, 5: 264
doi: 10.1039/C7MH00884H
22 Feng J W, Yang Z, Yang K, et al. Influence of 317L-Cu antibacterial stainless steel on biological behavior of fibroblasts in mice [J]. J. China Med. Univ., 2022, 51: 59
冯靖雯, 杨 泽, 杨 柯 等. 317L-Cu抗菌不锈钢对小鼠成纤维细胞生物学行为的影响 [J]. 中国医科大学学报, 2022, 51: 59
23 Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mildew induced corrosion of Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 13
doi: 10.11902/1005.4537.2020.034
24 Vatansever F, De Melo W C M A, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond [J]. FEMS Microbiol. Rev., 2013, 37: 955
doi: 10.1111/1574-6976.12026 pmid: 23802986
25 Hodges B C, Cates E L, Kim J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials [J]. Nat. Nanotechnol., 2018, 13: 642
doi: 10.1038/s41565-018-0216-x pmid: 30082806
26 Xie M S, Dai F F, Li J, et al. Tailoring the electronic metal-support interactions in supported atomically dispersed gold catalysts for efficient Fenton-like reaction [J]. Angew. Chem., Int. Ed., 2021, 60: 14370
doi: 10.1002/anie.v60.26
27 Yu Y D, Lu L X, Yang Q, et al. Using MoS2 nanomaterials to generate or remove reactive oxygen species: A review [J]. ACS Appl. Nano Mater., 2021, 4: 7523
doi: 10.1021/acsanm.1c00751
28 Song C L, Zhan Q, Liu F, et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions [J]. Angew. Chem., Int. Ed., 2022, 61: e202200406
29 Ono Y, Matsumura T, Kitajima N, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals [J]. J. Phys. Chem., 1977, 81: 1307
doi: 10.1021/j100528a018
30 Siahrostami S, Villegas S J, Bagherzadeh Mostaghimi A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide [J]. ACS Catal., 2020, 10: 7495
doi: 10.1021/acscatal.0c01641
31 Zhang J M, Ma J, Choksi T S, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2 [J]. J. Am. Chem. Soc., 2022, 144: 2255
doi: 10.1021/jacs.1c12157
32 Wang M J, Dong X, Meng Z D, et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production [J]. Angew. Chem., Int. Ed., 2021, 60: 11190
doi: 10.1002/anie.v60.20
33 Jiang Y Y, Ni P J, Chen C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry [J]. Adv. Energy Mater., 2018, 8: 1801909
doi: 10.1002/aenm.v8.31
34 Rodriguez P, Koper M T M. Electrocatalysis on gold [J]. Phys. Chem. Chem. Phys., 2014, 16: 13583
doi: 10.1039/c4cp00394b pmid: 24728379
35 Blizanac B B, Ross P N, Markovic N M. Oxygen electroreduction on Ag (111) : The pH effect [J]. Electrochim. Acta, 2007, 52: 2264
doi: 10.1016/j.electacta.2006.06.047
36 Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design [J]. Nat. Mater., 2013, 12: 1137
doi: 10.1038/nmat3795 pmid: 24240242
37 Park J, Du P, Jeon J K, et al. Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis [J]. Angew. Chem., Int. Ed., 2015, 54: 14753
doi: 10.1002/anie.v54.49
38 Gralnick J A, Newman D K. Extracellular respiration [J]. Mol. Microbiol., 2007, 65: 1
doi: 10.1111/j.1365-2958.2007.05778.x pmid: 17581115
39 Lovley D R. Dissimilatory metal reduction: from early life to bioremediation [J]. ASM News, 2002, 68: 231
40 Yang Y G, Xu M Y, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems [J]. Process Biochem., 2012, 47: 1707
doi: 10.1016/j.procbio.2012.07.032
41 Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration [J]. Appl. Environ. Microbiol., 2012, 78: 913
doi: 10.1128/AEM.06803-11
42 Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by Pyocyanin in Pseudomonas aeruginosa biofilms [J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0 pmid: 32763156
43 Light S H, Su L, Rivera-Lugo R, et al. A Flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria [J]. Nature, 2018, 562: 140
doi: 10.1038/s41586-018-0498-z
44 Gu Y Q, Srikanth V, Salazar-Morales A I, et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour [J]. Nature, 2021, 597: 430
doi: 10.1038/s41586-021-03857-w
45 Cai Y Y, Zhang W X, Jiang Y M. Effect of anode materials on the efficiency of extracellular electron transfer in microbial fuel cells [J]. Electr. Qual., 2020, (1): 52
蔡映芸, 章文贤, 蒋咏梅. 微生物燃料电池阳极材料对微生物胞外电子传递效率的影响 [J]. 电子质量, 2020, (1): 52
46 Zhang Z H, Li Z, Sun M C, et al. Strengthening mechanisms of microbial extracellular electron transfer process and efficient transformation of pollutants [J]. Acta Sci. Circum., 2020, 40: 3484
张照韩, 李 增, 孙沐晨 等. 微生物胞外电子传递过程强化机制及污染物高效转化 [J]. 环境科学学报, 2020, 40: 3484
47 Kong G N, Xu M Y, Yang Y G. Direct contact-dependent microbial extracellular electron transfer [J]. Acta Microbiol. Sin., 2017, 57: 643
孔冠楠, 许玫英, 杨永刚. 基于直接接触的微生物胞外电子传递 [J]. 微生物学报, 2017, 57: 643
48 Liu S R, Wu X E, Wang Y P. Progress in nanomaterials mediated microbial extracellular electron transfer [J]. CIESC J., 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展 [J]. 化工学报, 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
49 Wang G M, Tang K W, Meng Z Y, et al. A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor [J]. Adv. Mater., 2020, 32: e2003616
50 Wang G M, Feng H Q, Gao A, et al. Extracellular electron transfer from aerobic bacteria to Au-Loaded TiO2 semiconductor without light: A new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells [J]. ACS Appl. Mater. Interfaces, 2016, 8: 24509
doi: 10.1021/acsami.6b10052
51 Wang G M, Feng H Q, Hu L S, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging [J]. Nat. Commun., 2018, 9: 2055
doi: 10.1038/s41467-018-04317-2
52 Fu J N, Zhu W D, Liu X M, et al. Self-activating anti-infection implant [J]. Nat. Commun., 2021, 12: 6907
doi: 10.1038/s41467-021-27217-4 pmid: 34824260
53 Yao J Z, Jiang T, Ji Y, et al. Water-fueled autocatalytic bactericidal pathway based on e-Fenton-like reactions triggered by galvanic corrosion and extracellular electron transfer [J]. J. Hazard. Mater., 2022, 440: 129730
doi: 10.1016/j.jhazmat.2022.129730
54 Ge Y, Liu J Y, Jiang T, et al. Self-disinfecting carbon filter: In situ spontaneous generation of reactive oxidative species via oxygen reduction reaction for efficient water treatment [J]. Colloids Surf., 2022, 648A: 129266
55 Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
[1] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[4] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[5] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[6] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[8] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[9] LUO Chen, WU Xiong, SONG Hanqiang, SUN Zhihua, TANG Zhihui. Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[10] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[11] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[13] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[14] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
No Suggested Reading articles found!