|
|
Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System |
QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan( ) |
Sino-German Joint Research Lab of Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Science of Shaanxi Province, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract Owing to the urgent need of aviation industry for microbial control of the fuel system of aircraft, it is imperative to establish a safe and efficient microbial control strategy for the fuel system to ensure the safe operation of aircraft. Water is generally considered to be an undesirable substance in the fuel system, which may lead to microbial contamination. The novel antibacterial strategies that can turn water into things of value with high disinfection efficiency have been urgently needed for the fuel system. This review surveys the edged technologies which may provide the design principle and important experimental guidance of "active" antibacterial functional coating. Accordingly, two electron sources include the extracellular electron transfer and the galvanic corrosion on the coated metals may become the key to spontaneous microbial-control coating.
|
Received: 16 September 2022
32134.14.1005.4537.2022.287
|
|
Fund: National Natural Science Foundation of China(22071196);National Natural Science Foundation of China(52001255);National Natural Science Foundation of China(22007078);Key R&D Program of Shaanxi Province(2021KWZ-18);Aeronautical Science Foundation of China(ASFC-2020Z061053001) |
Corresponding Authors:
GE Yan, E-mail: ge@nwpu.edu.cn
|
1 |
Zhao A J, Shi G S, Han X. Research on fuel microbial contamination of military aircraft [J]. Aircraft Des., 2017, 37 (5): 48
|
|
赵安家, 施广生, 韩 笑. 军机燃油微生物污染的研究 [J]. 飞机设计, 2017, 37(5): 48
|
2 |
Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
|
|
李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
|
3 |
Hu D, Zeng J, Wu S S, et al. A survey of microbial contamination in aviation fuel from aircraft fuel tanks [J]. Folia Microbiol., 2020, 65: 371
doi: 10.1007/s12223-019-00744-w
pmid: 31392506
|
4 |
Baena-Zambrana S, Repetto S L, Lawson C P, et al. Behaviour of water in jet fuel - A literature review [J]. Prog. Aerosp. Sci., 2013, 60: 35
doi: 10.1016/j.paerosci.2012.12.001
|
5 |
Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
|
|
马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1051
doi: 10.11902/1005.4537.2021.273
|
6 |
Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
|
|
贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
|
7 |
Standard test method for adenosine triphosphate (ATP) content of microorganisms in fuel, fuel/water mixtures and fuel associated water [S]. ASTM International, 2008
|
8 |
He Y J, Zhang T S, Wang H T, et al. Research progress of biocides for microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 748
|
|
何勇君, 张天遂, 王海涛 等. 微生物腐蚀杀菌剂研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 748
doi: 10.11902/1005.4537.2020.167
|
9 |
Zhu H L, Lu X M, Li X F, et al. Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 51
|
|
朱海林, 陆小猛, 李晓芬 等. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 51
doi: 10.11902/1005.4537.2021.082
|
10 |
Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it [J]. Nat. Nanotechnol., 2018, 13: 65
doi: 10.1038/s41565-017-0013-y
pmid: 29203912
|
11 |
Hu D Z, Han J, Zhang R, et al. Control of microbial contamination in aircraft fuel system [J]. Adv. Microbiol., 2018, 7: 131
doi: 10.12677/AMB.2018.74016
|
12 |
Raikos V, Vamvakas S S, Sevastos D, et al. Water content, temperature and biocide effects on the growth kinetics of bacteria isolated from JP-8 aviation fuel storage tanks [J]. Fuel, 2012, 93: 559
doi: 10.1016/j.fuel.2011.10.028
|
13 |
Li Y. China issued the relevant standards for oil supply engineering of civil transport airports [J]. China Plant Eng., 2017, (5): 6
|
|
李 阳. 我国发布民用运输机场供油工程相关标准 [J]. 中国设备工程, 2017, (5): 6
|
14 |
Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
|
|
刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究 [J]. 中国腐蚀与防护学报, 2022, 42: 135
|
15 |
Cai S, Zhang S, Ni Y W, et al. Study on antibacterial performance of antistatic and antibacterial corrosion protective coatings for linings of fuel storage tanks [J]. Paint Coat. Ind., 2012, 42(10): 25
|
|
蔡 森, 张 松, 倪余伟 等. 油舱内壁防霉导静电防腐蚀涂料抗菌性能研究 [J]. 涂料工业, 2012, 42(10): 25
|
16 |
Zhao X, Zhu J J, Li M, et al. Domestic application and development status of anti-bacterial agent [J]. Mater. Rep., 2016, 30(7): 68
|
|
赵 欣, 朱健健, 李 梦 等. 我国抗菌剂的应用与发展现状 [J]. 材料导报, 2016, 30(7): 68
|
17 |
Rizzello L, Pompa P P. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines [J]. Chem. Soc. Rev., 2014, 43: 1501
doi: 10.1039/c3cs60218d
pmid: 24292075
|
18 |
Azzam E M S, Sami R M, Kandile N G. Activity inhibition of sulfate reducing bacteria using some cationic thiol surfactants and their nanostructures [J]. Am. J. Biochem., 2012, 2: 29
doi: 10.5923/j.ajb.20120203.03
|
19 |
Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066
pmid: 20970183
|
20 |
Ponomarev V A, Sukhorukova I V, Sheveyko A N, et al. Antibacterial performance of TiCaPCON films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions [J]. ACS Appl. Mater. Interfaces, 2018, 10: 24406
doi: 10.1021/acsami.8b06671
|
21 |
Cao H L, Tang K W, Liu X Y. Bifunctional galvanics mediated selective toxicity on titanium [J]. Mater. Horiz., 2018, 5: 264
doi: 10.1039/C7MH00884H
|
22 |
Feng J W, Yang Z, Yang K, et al. Influence of 317L-Cu antibacterial stainless steel on biological behavior of fibroblasts in mice [J]. J. China Med. Univ., 2022, 51: 59
|
|
冯靖雯, 杨 泽, 杨 柯 等. 317L-Cu抗菌不锈钢对小鼠成纤维细胞生物学行为的影响 [J]. 中国医科大学学报, 2022, 51: 59
|
23 |
Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mildew induced corrosion of Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
|
|
张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 13
doi: 10.11902/1005.4537.2020.034
|
24 |
Vatansever F, De Melo W C M A, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond [J]. FEMS Microbiol. Rev., 2013, 37: 955
doi: 10.1111/1574-6976.12026
pmid: 23802986
|
25 |
Hodges B C, Cates E L, Kim J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials [J]. Nat. Nanotechnol., 2018, 13: 642
doi: 10.1038/s41565-018-0216-x
pmid: 30082806
|
26 |
Xie M S, Dai F F, Li J, et al. Tailoring the electronic metal-support interactions in supported atomically dispersed gold catalysts for efficient Fenton-like reaction [J]. Angew. Chem., Int. Ed., 2021, 60: 14370
doi: 10.1002/anie.v60.26
|
27 |
Yu Y D, Lu L X, Yang Q, et al. Using MoS2 nanomaterials to generate or remove reactive oxygen species: A review [J]. ACS Appl. Nano Mater., 2021, 4: 7523
doi: 10.1021/acsanm.1c00751
|
28 |
Song C L, Zhan Q, Liu F, et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions [J]. Angew. Chem., Int. Ed., 2022, 61: e202200406
|
29 |
Ono Y, Matsumura T, Kitajima N, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals [J]. J. Phys. Chem., 1977, 81: 1307
doi: 10.1021/j100528a018
|
30 |
Siahrostami S, Villegas S J, Bagherzadeh Mostaghimi A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide [J]. ACS Catal., 2020, 10: 7495
doi: 10.1021/acscatal.0c01641
|
31 |
Zhang J M, Ma J, Choksi T S, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2 [J]. J. Am. Chem. Soc., 2022, 144: 2255
doi: 10.1021/jacs.1c12157
|
32 |
Wang M J, Dong X, Meng Z D, et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production [J]. Angew. Chem., Int. Ed., 2021, 60: 11190
doi: 10.1002/anie.v60.20
|
33 |
Jiang Y Y, Ni P J, Chen C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry [J]. Adv. Energy Mater., 2018, 8: 1801909
doi: 10.1002/aenm.v8.31
|
34 |
Rodriguez P, Koper M T M. Electrocatalysis on gold [J]. Phys. Chem. Chem. Phys., 2014, 16: 13583
doi: 10.1039/c4cp00394b
pmid: 24728379
|
35 |
Blizanac B B, Ross P N, Markovic N M. Oxygen electroreduction on Ag (111) : The pH effect [J]. Electrochim. Acta, 2007, 52: 2264
doi: 10.1016/j.electacta.2006.06.047
|
36 |
Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design [J]. Nat. Mater., 2013, 12: 1137
doi: 10.1038/nmat3795
pmid: 24240242
|
37 |
Park J, Du P, Jeon J K, et al. Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis [J]. Angew. Chem., Int. Ed., 2015, 54: 14753
doi: 10.1002/anie.v54.49
|
38 |
Gralnick J A, Newman D K. Extracellular respiration [J]. Mol. Microbiol., 2007, 65: 1
doi: 10.1111/j.1365-2958.2007.05778.x
pmid: 17581115
|
39 |
Lovley D R. Dissimilatory metal reduction: from early life to bioremediation [J]. ASM News, 2002, 68: 231
|
40 |
Yang Y G, Xu M Y, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems [J]. Process Biochem., 2012, 47: 1707
doi: 10.1016/j.procbio.2012.07.032
|
41 |
Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration [J]. Appl. Environ. Microbiol., 2012, 78: 913
doi: 10.1128/AEM.06803-11
|
42 |
Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by Pyocyanin in Pseudomonas aeruginosa biofilms [J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0
pmid: 32763156
|
43 |
Light S H, Su L, Rivera-Lugo R, et al. A Flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria [J]. Nature, 2018, 562: 140
doi: 10.1038/s41586-018-0498-z
|
44 |
Gu Y Q, Srikanth V, Salazar-Morales A I, et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour [J]. Nature, 2021, 597: 430
doi: 10.1038/s41586-021-03857-w
|
45 |
Cai Y Y, Zhang W X, Jiang Y M. Effect of anode materials on the efficiency of extracellular electron transfer in microbial fuel cells [J]. Electr. Qual., 2020, (1): 52
|
|
蔡映芸, 章文贤, 蒋咏梅. 微生物燃料电池阳极材料对微生物胞外电子传递效率的影响 [J]. 电子质量, 2020, (1): 52
|
46 |
Zhang Z H, Li Z, Sun M C, et al. Strengthening mechanisms of microbial extracellular electron transfer process and efficient transformation of pollutants [J]. Acta Sci. Circum., 2020, 40: 3484
|
|
张照韩, 李 增, 孙沐晨 等. 微生物胞外电子传递过程强化机制及污染物高效转化 [J]. 环境科学学报, 2020, 40: 3484
|
47 |
Kong G N, Xu M Y, Yang Y G. Direct contact-dependent microbial extracellular electron transfer [J]. Acta Microbiol. Sin., 2017, 57: 643
|
|
孔冠楠, 许玫英, 杨永刚. 基于直接接触的微生物胞外电子传递 [J]. 微生物学报, 2017, 57: 643
|
48 |
Liu S R, Wu X E, Wang Y P. Progress in nanomaterials mediated microbial extracellular electron transfer [J]. CIESC J., 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
|
|
刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展 [J]. 化工学报, 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
|
49 |
Wang G M, Tang K W, Meng Z Y, et al. A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor [J]. Adv. Mater., 2020, 32: e2003616
|
50 |
Wang G M, Feng H Q, Gao A, et al. Extracellular electron transfer from aerobic bacteria to Au-Loaded TiO2 semiconductor without light: A new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells [J]. ACS Appl. Mater. Interfaces, 2016, 8: 24509
doi: 10.1021/acsami.6b10052
|
51 |
Wang G M, Feng H Q, Hu L S, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging [J]. Nat. Commun., 2018, 9: 2055
doi: 10.1038/s41467-018-04317-2
|
52 |
Fu J N, Zhu W D, Liu X M, et al. Self-activating anti-infection implant [J]. Nat. Commun., 2021, 12: 6907
doi: 10.1038/s41467-021-27217-4
pmid: 34824260
|
53 |
Yao J Z, Jiang T, Ji Y, et al. Water-fueled autocatalytic bactericidal pathway based on e-Fenton-like reactions triggered by galvanic corrosion and extracellular electron transfer [J]. J. Hazard. Mater., 2022, 440: 129730
doi: 10.1016/j.jhazmat.2022.129730
|
54 |
Ge Y, Liu J Y, Jiang T, et al. Self-disinfecting carbon filter: In situ spontaneous generation of reactive oxidative species via oxygen reduction reaction for efficient water treatment [J]. Colloids Surf., 2022, 648A: 129266
|
55 |
Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|