Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1031-1040    DOI: 10.11902/1005.4537.2023.144
Current Issue | Archive | Adv Search |
Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid
DONG Hongmei1, LI Baoyi1, RAN Boyuan2,3, WANG Qi1, NIU Yulan1, DING Lifeng1(), QIANG Yujie2,3()
1.Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
2.Nation Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3.Talented Doctoral Workstation of Ji Xian, Linfen 042200, China
Download:  HTML  PDF(7333KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Developing high-efficiency and eco-friendly corrosion inhibitors to replace traditional toxic and harmful ones is necessary to protect the ecological environment. Based on these premises, we employed electrochemical impedance techniques, gravimetric methods, and others to investigate the corrosion inhibition and mechanism of a low-cost drug, liraglutide (LNLP), used for human diabetes treatment, on copper in 0.5 mol/L sulfuric acid solution. The findings demonstrate that LNLP is a green, eco-friendly type of corrosion inhibitor, and is effective in inhibiting the corrosion of copper in sulfuric acid. The electrochemical results show that LNLP could slow down the corrosion rate of copper in 0.5 mol/L H2SO4 solution by increasing the film and charge transfer resistance and reducing the film and double-layer capacitance. When the concentration of LNLP is only 1 mmol/L, the η is as high as 99.95%. Potentiodynamic polarization curves results indicate that LNLP is a modest mixed-type inhibitor that can inhibit the anodic and cathodic reactions of copper. Based on the adsorption curve and theoretical calculation, the interaction between LNLP and the copper surface and the structure-performance relationship of LNLP molecule are revealed. The relevant results show that the adsorption of LNLP on the copper surface is parallel, providing max protection for copper. The adsorption of LNLP molecules on the copper is mainly through the nitrogen, oxygen heteroatoms, and conjugated ringy functional groups within the molecules, forming a single-molecule film through the synergistic effect of physical and chemical adsorption, isolating corrosive media from the copper surface.

Key words:  Cu      corrosion inhibitor      sulfuric acid      corrosion protection      theoretical calculation     
Received:  08 May 2023      32134.14.1005.4537.2023.144
ZTFLH:  TG174  
Fund: Science and Technology Innovation Project of Colleges and Universities of Shanxi Province(2021L552);The 8th Youth Talent Promotion Project of China Association for Science and Technology(YESS20220689)
Corresponding Authors:  DING Lifeng, E-mail: dinglf@tit.edu.cn;QIANG Yujie, E-mail: qiangyujie@ustb.edu.cn   

Cite this article: 

DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1031-1040.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.144     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1031

Fig.1  Molecular structure of Linagliptin
Fig.2  Nyquist (a, b), impedance module (c) and phase angle (d) plots of Cu in 0.5 mol/L H2SO4 with different concentrations of LNLP
Fig.3  Equivalent circuits for fitting EIS data: (a) used for blank curve, (b) used for curves with LNLP
C / mmol·L-1Rc / kΩ·cm2Rct / kΩ·cm2Qf / μF·cm-2n1Qdl / μF·cm-2n2W / 10-2 Ω·cm2·s1/2η
Blank0.0040.05618.41225.80.690.45-
0.12.0324.25.6141.20.70-99.77%
0.212.370.22.1110.50.72-99.93%
0.518.590.11.818.60.69-99.94%
119.3103.21.516.70.72-99.95%
Table 1  EIS parameters of Cu in H2SO4 solution containing various concentration of LNLP
MaterialConcentration mmol/LInhibition efficiencyRef.
DFD598.9%[19]
IMPs297.5%[20]
DI-SAMs580.7%[21]
AMB390.3%[22]
LNLP199.9%This work
Table 2  Inhibition efficiency of different corrosion inhibitors on Cu in 0.5 mol/L H2SO4 solution
Fig.4  Tafel curves for Cu in H2SO4 with various concentration of LNLP

C

mmol/L

EcorrVSCE

Icorr

μA·cm-2

βc

mV·dec-1

βa

mV·dec-1

η
Blank-0.0511.49-215.644.8-
0.1-0.100.82-156.3108.392.9%
0.2-0.130.61-163.1141.294.7%
0.5-0.130.45-148.191.596.1%
1-0.090.23-141.569.998.0%
Table 3  Tafel parameters of Cu in H2SO4 solution containing various concentration of LNLP
Fig.5  Mass loss results (a) and corresponding adsorp-tion curves (b) of Cu
Fig.6  Corrosion morphologies (a1, b1) and EDS results (a2, b2) of Cu in H2SO4 solution without (a1, a2) and with (b1, b2) 1 mmol/L LNLP
Fig.7  3D corrosion morphologies of Cu in H2SO4 solution without (a) and with (b) 1 mmol/L LNLP
Fig.8  Geometrically optimized configuration (a), LUMO (b) and HOMO (c) of LNLP molecule
Fig.9  Mulliken charge of LNLP molecule
Fig.10  Equilibrium adsorption configuration of LNLP on Cu (111) crystal plane: (a) top view, (b) side view
Fig.11  Schematic diagram of Cu corrosion mechanism in H2SO4 solution (a) and LNLP corrosion inhibition mechanism on Cu (b)
1 Tan B, Xiang B, Zhang S, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium [J]. J. Colloid Interf. Sci., 2021, 582: 918
doi: 10.1016/j.jcis.2020.08.093
2 Li H, Zhang S T, Qiang Y J. Corrosion retardation effect of a green cauliflower extract on copper in H2SO4 solution: Electrochemical and theoretical explorations [J]. J. Mol. Liq., 2021, 321: 114450
doi: 10.1016/j.molliq.2020.114450
3 Jiang B, Xiang Q, Atrens A, et al. Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets [J]. Corros. Sci., 2017, 126: 374
doi: 10.1016/j.corsci.2017.08.004
4 Qiu L, Li X H, Lei R. Inhibition performance of coconut diethanolamide on cold rolled steel in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 301
仇 莉, 李向红, 雷 然 等. 椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 301
5 Li H, Zhang Q H, Meng X Z, et al. A novel cerium organic network modified graphene oxide prepared multifunctional waterborne epoxy-based coating with excellent mechanical and passive/active anti-corrosion properties [J]. Chem. Eng. J., 2023, 465: 142997
doi: 10.1016/j.cej.2023.142997
6 Li H, Qiang Y, Zhao W, et al. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating [J]. Corros. Sci., 2021, 191: 109715
doi: 10.1016/j.corsci.2021.109715
7 Zhang G, Wu L, Tang A, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
doi: 10.1016/j.corsci.2018.05.010
8 Qiang Y, Zhang S, Tan B, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
doi: 10.1016/j.corsci.2018.01.008
9 Wu H, Deng S, Li X. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77
10 Deng Z, Lei R, Zhang Z, et al. Corrosion Inhibition of Vetiver Extract on Steel in Hydrochloric Acid Environment[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
11 Qiang Y, Li H, Lan X. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
doi: 10.1016/j.jmst.2020.04.005
12 Li H, Zhang S, Tan B, et al. Investigation of Losartan Potassium as an eco-friendly corrosion inhibitor for copper in 0.5 M H2SO4 [J]. J. Mol. Liq., 2020, 305: 112789
doi: 10.1016/j.molliq.2020.112789
13 Qiang Y, Guo L, Li H, et al. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium [J]. Chem. Eng. J., 2021, 406: 126863
doi: 10.1016/j.cej.2020.126863
14 Kumar D, Jain N, Jain V, et al. Amino acids as copper corrosion inhibitors: A density functional theory approach [J]. Appl. Surf. Sci., 2020, 514: 145905
doi: 10.1016/j.apsusc.2020.145905
15 Ramezanzadeh M, Bahlakeh G, Sanaei Z, et al. Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab initio study [J]. Appl. Surf. Sci., 2019, 463: 1058
doi: 10.1016/j.apsusc.2018.09.029
16 Qiang Y, Zhang S, Wang L. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
doi: 10.1016/j.apsusc.2019.06.190
17 Guo L, Tan J, Kaya S, et al. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation [J]. J. Colloid Interf. Sci., 2020, 570: 116
doi: 10.1016/j.jcis.2020.03.001
18 Zhang Y, Zhang S, Tan B, et al. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution [J]. J. Colloid Interf. Sci., 2021, 604: 1
doi: 10.1016/j.jcis.2021.07.034 pmid: 34261015
19 Tan B, Zhang S, Qiang Y, et al. Insight into the corrosion inhibition of copper in sulfuric acid via two environmentally friendly food spices: Combining experimental and theoretical methods [J]. J. Mol. Liq., 2019, 286: 110891
doi: 10.1016/j.molliq.2019.110891
20 Feng L, Zhang S, Feng Y, et al. Self-aggregate nanoscale copolymer of new synthesized compounds efficiently protecting copper corrosion in sulfuric acid solution [J]. Chem. Eng. J., 2020, 394: 124909
doi: 10.1016/j.cej.2020.124909
21 Qiang Y, Fu S, Zhang S, et al. Designing and fabricating of single and double alkyl-chain indazole derivatives self-assembled monolayer for corrosion inhibition of copper [J]. Corros. Sci., 2018, 140: 111
doi: 10.1016/j.corsci.2018.06.012
22 Zeng W, Li W, Tan B, et al. A research combined theory with experiment of 2-Amino-6- (Methylsulfonyl) Benzothiazole as an excellent corrosion inhibitor for copper in H2SO4 medium [J]. J. Taiwan Inst. Chem. Eng., 2021, 128: 417
doi: 10.1016/j.jtice.2021.08.032
23 Yao X, Qiang Y, Guo L, et al. Renewable low-cost brassica rapa subsp. Extract for protection of Q235 steel in H2SO4 medium: Experimental and modeling studies [J]. J. Ind. Eng. Chem., 2022, 114: 427
doi: 10.1016/j.jiec.2022.07.033
24 Zhu M, Guo L, He Z, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
25 Haque J, Srivastava V, Quraishi M A, et al. Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution [J]. Corros. Sci., 2020, 172: 108665
doi: 10.1016/j.corsci.2020.108665
26 Li W, Tan B, Zhang S, et al. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: Experimental evaluation and theoretical analysis [J]. Appl. Surf. Sci., 2022, 602:154165
doi: 10.1016/j.apsusc.2022.154165
27 Sanaei Z, Bahlakeh G, Ramezanzadeh B, et al. Application of green molecules from Chicory aqueous extract for steel corrosion mitigation against chloride ions attack; the experimental examinations and electronic/atomic level computational studies [J]. J. Mol. Liq., 2019, 290: 111176
doi: 10.1016/j.molliq.2019.111176
28 Tan B, Zhnag S, Qiang Y, et al. Investigation of the inhibition effect of Montelukast Sodium on the copper corrosion in 0.5 mol/L H2SO4 [J]. J. Mol. Liq., 2017, 248: 902
doi: 10.1016/j.molliq.2017.10.111
[1] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[2] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[3] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[4] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[5] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[6] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[7] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[8] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[9] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[10] ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[11] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[12] YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[13] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[14] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[15] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
No Suggested Reading articles found!