|
|
Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model |
MAO Feixiong1( ), ZHOU Yuting2, YAO Wenqing2, SHEN Xiang3, XIAO Long3, LI Minghui3 |
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2.School of Metallurgy, Northeastern University, Shenyang 110819, China 3.Ningbo Hangzhou Bay Bridge Development Co. LTD, Ningbo 315201, China |
|
|
Abstract The passivity of type 304 stainless steel in aqueous solution at different pH values has been assessed, and the acquired data suggest that the passive film formed on type 304 SS is n-type semiconducting, and the donor density within the passive film is inversely proportional to the applied voltage except those in pH=13.4 solution. The current density in steady-state is voltage-independent in the passive range, while the thickness of the barrier layer has a linear relationship with the applied voltage, which are satisfied with the statements of the point defect model (PDM). EIS data are analyzed with the PDM by optimizing the model on the data using genetic algorithm approach. In addition, the impedance data over the entire passive range can be described by the fitted parameters, which can be utilized to predict the corrosion evolution of the sample as a function of time. The results of the optimization indicate that interstitial cations are the dominant defects in the barrier layer and that the diffusivity of the defect is about 10-19 cm2·s-1.
|
Received: 31 August 2022
32134.14.1005.4537.2022.269
|
|
Fund: Ningbo Key Scientific and Technological Project(2021Z079);International Partnership Program of Chinese Academy of Sciences(174433KYSB20200006) |
Corresponding Authors:
MAO Feixiong, E-mail: maofeixiong@nimte.ac.cn
|
1 |
Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
|
|
盖喜鹏, 雷 黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646
doi: 10.11902/1005.4537.2020.238
|
2 |
Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
|
|
刘欣怡, 赵亚州, 张 欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
doi: 10.11902/1005.4537.2020.020
|
3 |
Li N, Li Y, Wang S G, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochim. Acta, 2006, 52: 760
doi: 10.1016/j.electacta.2006.06.023
|
4 |
Yang S F, Macdonald D D. Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion [J]. Electrochim. Acta, 2007, 52: 1871
doi: 10.1016/j.electacta.2006.07.052
|
5 |
Nicic I, Macdonald D D. The passivity of Type 316L stainless steel in borate buffer solution [J]. J. Nucl. Mater., 2008, 379: 54
doi: 10.1016/j.jnucmat.2008.06.014
|
6 |
Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
doi: 10.1016/j.corsci.2006.01.009
|
7 |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
doi: 10.1149/1.2127591
|
8 |
Lin L F, Chao C Y, Macdonald D D. A point defect model for anodic passive films: II. Chemical breakdown and pit initiation [J]. J. Electrochem. Soc., 1981, 128: 1194
doi: 10.1149/1.2127592
|
9 |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: III. Impedance response [J]. J. Electrochem. Soc., 1982, 129: 1874
doi: 10.1149/1.2124318
|
10 |
Macdonald D D, Smedley S I. An electrochemical impedance analysis of passive films on nickel (111) in phosphate buffer solutions [J]. Electrochim. Acta, 1990, 35: 1949
doi: 10.1016/0013-4686(90)87104-A
|
11 |
Urquidi-Macdonald M, Real S, Macdonald D D. Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data: II. Transformations in the complex plane [J]. J. Electrochem. Soc., 1986, 133: 2018
doi: 10.1149/1.2108332
|
12 |
Macdonald D D. Point defect model of the passive state [A]. MacdonaldJ R, BarsukovE. Impedance Spectroscopy Theory, Experiment, and Applications [M]. 2nd ed., New York: Wiley-Interscience, 2005: 382
|
13 |
Sharifi-Asl S, Taylor M L, Lu Z J, et al. Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach [J]. Electrochim. Acta, 2013, 102: 161
doi: 10.1016/j.electacta.2013.03.143
|
14 |
Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
|
15 |
Hakiki N E, Da Cunha Belo M, Simões A M P, et al. Semiconducting properties of passive films formed on stainless steels: influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145: 3821
doi: 10.1149/1.1838880
|
16 |
Di Paola A. Semiconducting properties of passive films on stainless steels [J]. Electrochim. Acta, 1989, 34: 203
doi: 10.1016/0013-4686(89)87086-0
|
17 |
Stimming U, Schultze J W. The capacity of passivated iron electrodes and the band structure of the passive layer [J]. Ber. Bunsenges. Phys. Chem., 1976, 80: 1297
doi: 10.1002/bbpc.v80:12
|
18 |
Gaben F, Vuillemin B, Oltra R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior [J]. J. Electrochem. Soc., 2004, 151: B595
doi: 10.1149/1.1803562
|
19 |
Wagner C. Models for lattice defects in oxide layers on passivated iron and nickel [J]. Ber. Bunsenges. Phys. Chem., 1973, 77: 1090
|
20 |
Goossens A, Vazquez M, Macdonald D D. The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution [J]. Electrochim. Acta, 1996, 41: 35
doi: 10.1016/0013-4686(95)00285-M
|
21 |
Macdonald D D, Sikora E, Sikora J. The kinetics of growth of the passive film on tungsten in acidic phosphate solutions [J]. Electrochim. Acta, 1998, 43: 2851
doi: 10.1016/S0013-4686(98)00026-7
|
22 |
Cheng X Q, Li X G, Yang L X, et al. Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky [J]. J. Wuhan Univ. Technol.: Mater. Sci. Ed., 2008, 23: 574
doi: 10.1007/s11595-006-4574-0
|
23 |
Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
doi: 10.1016/S0013-4686(02)00552-2
|
24 |
Macdonald D D, Urquidi-Macdonald M. Kramers-Kronig transformation of constant phase impedances [J]. J. Electrochem. Soc., 1990, 137: 515
doi: 10.1149/1.2086490
|
25 |
Sharifi-Asl S, Macdonald D D, Almarzooqi A, et al. A comprehensive electrochemical impedance spectroscopic study of passive carbon steel in concrete pore water [J]. J. Electrochem. Soc., 2013, 160: C316
doi: 10.1149/2.022308jes
|
26 |
Ferreira M G S, Dawson J L. Electrochemical studies of the passive film on 316 stainless steel in chloride media [J]. J. Electrochem. Soc., 1985, 132: 760
doi: 10.1149/1.2113954
|
27 |
Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
doi: 10.1016/j.electacta.2011.07.072
|
28 |
Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
|
29 |
Atrens A, Baroux B, Mantel M. The secondary passive film for type 304 stainless steel in 0.5 M H2SO4 [J]. J. Electrochem. Soc., 1997, 144: 3697
doi: 10.1149/1.1838078
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|