Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 911-921    DOI: 10.11902/1005.4537.2022.269
Current Issue | Archive | Adv Search |
Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model
MAO Feixiong1(), ZHOU Yuting2, YAO Wenqing2, SHEN Xiang3, XIAO Long3, LI Minghui3
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
3.Ningbo Hangzhou Bay Bridge Development Co. LTD, Ningbo 315201, China
Download:  HTML  PDF(4107KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The passivity of type 304 stainless steel in aqueous solution at different pH values has been assessed, and the acquired data suggest that the passive film formed on type 304 SS is n-type semiconducting, and the donor density within the passive film is inversely proportional to the applied voltage except those in pH=13.4 solution. The current density in steady-state is voltage-independent in the passive range, while the thickness of the barrier layer has a linear relationship with the applied voltage, which are satisfied with the statements of the point defect model (PDM). EIS data are analyzed with the PDM by optimizing the model on the data using genetic algorithm approach. In addition, the impedance data over the entire passive range can be described by the fitted parameters, which can be utilized to predict the corrosion evolution of the sample as a function of time. The results of the optimization indicate that interstitial cations are the dominant defects in the barrier layer and that the diffusivity of the defect is about 10-19 cm2·s-1.

Key words:  304 stainless steel      passivity      point defect model      EIS     
Received:  31 August 2022      32134.14.1005.4537.2022.269
ZTFLH:  TG174  
Fund: Ningbo Key Scientific and Technological Project(2021Z079);International Partnership Program of Chinese Academy of Sciences(174433KYSB20200006)
Corresponding Authors:  MAO Feixiong, E-mail: maofeixiong@nimte.ac.cn   

Cite this article: 

MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 911-921.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.269     OR     https://www.jcscp.org/EN/Y2023/V43/I4/911

Fig.1  Interfacial defect generation/annihilation reactions happened hypothetically in the growth of anodic barrier oxide films according to PDM. For the symbols, m is metal atom, VMχ' is cation vacancy on the metal sublattice of the barrier layer, Miχ+ is interstitial cation, MM is metal cation on the metal sublattice of barrier layer, VO is oxygen vacancy on the oxygen sublattice of barrier layer. OO is oxygen anion on the oxygen sublattice of barrier layer, Mδ+ is metal cation in solution
Reactionai / V-1bi / cm-1ciUnits of ki0
(1) m+VMχ'k1MM+νm+χe'α1(1-α)χγ-α1χK1 βχγ1S
(2) mk2Miχ++νm+χe'α2(1-α)χγ-α2χK2 βχγmolcm2s
(3) mk3MM+χ2VO+χe'α3(1-α)χγ-α3χK3 βχγmolcm2s
(4) MMk4Mδ++(δ-χ)e'α4αδγ-α4 βδγmolcm2s
(5) Miχ+k5Mδ++(δ-χ)e'α5αδγ-α5 βδγcms
(6) VO+H2Ok6OO+2H+2α6αγ-α6 βδγcms
(7) MOχ/2+χH+k7Mδ++χ2H2O+(δ-χ)e'α7α(δ-χ)γ-α7(δ-χ)βγmolcm2s
Table 1  Various coefficients in the rate constants of the interfacial reactions, i.e. ki=ki0eaiVebiLecipH
Fig.2  Potentiodynamic polarization curves for Type 304 stain steel in the test solutions with different pH values
Fig.3  Steady state (potentiostatic) current densities of 304 stainless steel in the test solutions with different pH values as a function of oxide formation potential. The inset shows the current vs. time curves
Fig.4  Mott-Schottky plots (a, c, e, g) and donor densities (b, d, f, h) for the barrier layer formed on 304 stainless steel passivated for 6 h at different formation potentials in pH 1.4 sulfuric acid solution (a, b), pH 5.4 acetate buffer solution (c, d), pH 9.4 borate buffer solution (e, f) and pH 13.4 H3BO3+NaOH solution (g, h)
Fig.5  EIS plots (a) and K-K transforms (b) for 304 stainless steel at a potential of 0.5 VSCE in pH 1.4 solution
Fig.6  Equivalent circuit used to fit the experimental data of EIS
Fig.7  Nyquist (a, c, e, g) and Bode (b, d, f, h) plots for 304 stainless steel in pH 1.4 sulfuric acid solution (a, b), pH 5.4 acetate buffer solution (c, d), pH 9.4 H3BO3+NaOH solution (e, f) and pH 13.4 H3BO3+NaOH solution (g, h) at different applied potentials
Parameter0.3 / V0.4 / V0.5 / VStage optinization
Polarizability α0.450.450.44Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-24.18×10-53.92×10-53.86×10-5Second stage optimization
CPE-α0.940.950.95Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

3.03×1052.14×1051.56×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

7.82×1061.72×1079.93×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

1.51×10-49.56×10-56.91×10-5Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.75×1052.88×1054.22×10-5Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

16.1520.2424.56Second stage optimization

Thickness of barrier layer

Lss / nm

1.241.471.74Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

1.34×10-188.64×10-196.43×10-19Second stage optimization
Table 2  Calculated values of various parameters from optimization of the PDM based on the experimental impedance data for 304 stainless steel in pH 1.4 solution at different applied potentials
Parameter0.3 / V0.4 / V0.5 / VStage optinization
Polarizability α0.340.250.25Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-27.34×10-53.53×10-54.14×10-5Second stage optimization
CPE-α110.94Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

1.07×1046.91×1047.38×104Second stage optimization

Electronic resistance

Re, h / Ω·cm2

3.78×10127.07×10127.67×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

3.14×10-56.99×10-51.13×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.08×1063.37×1054.19×105Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

15.2213.415.66Second stage optimization

Thickness of barrier layer

Lss / nm

2.362.993.33Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

1.85×10-105.45×10-194.66×10-19Second stage optimization
Table 3  Calculated values of various parameters from optimization of the PDM based on the experimental impedance data for 304 stainless steel in pH=5.4 solution at different applied potentials
Parameter0 / V-0.1 / V-0.2 / VStage optinization
Polarizability α0.450.2826240.289249Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y (S·s α ·cm-22.39×10-52.70×10-53.97×10-5Second stage optimization
CPE-α0.910.910.89Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

8.48×1053.82×1056.28×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

1.00×10139.81×10129.99×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

2.23×10-448.99×10-42.32×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

1.18×1052.03×1046.02×104Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

13.939.918.62Second stage optimization

Thickness of barrier layer

Lss / nm

2.081.991.66Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

2.32×10-181.08×10-181.34×10-18Second stage optimization
Table 4  Calculated values of various parameters from optimization of the PDM based on the experimental impedance data for 304 stainless steel in pH 9.4 solution at different applied potentials
Parameter-0.2 / V-0.3 / V-0.4 / VStage optinization
Polarizability α0.3942210.4499730.45Second stage optimization

Transfer coeff.

α2

0.230.230.23Average of first stage optimization

Transfer coeff.

α3

0.660.660.66Average of first stage optimization

Transfer coeff.

α7

0.490.490.49Average of first stage optimization

Rate constant

k200 / mol·cm-2·s-1

4.67×10-134.67×10-134.67×10-13Average of first stage optimization

Rate constant

k300 / mol·cm-2·s-1

3.78×10-173.78×10-173.78×10-17Average of first stage optimization

Rate constant

k700 / mol·cm-2·s-1

6.16×10-156.16×10-156.16×10-15Average of first stage optimization
CPE-Y / S·s α ·cm-24.08×10-53.65×10-53.97×10-5Second stage optimization
CPE-α0.880.920.92Second stage optimization

Warburg coeff.

σ / Ω·cm2·s-0.5

3.99×1052.52×1052.26×105Second stage optimization

Electronic resistance

Re, h / Ω·cm2

8.28×10128.28×10127.42×1012Second stage optimization

Double layer capacitance

Cdl / F·cm-2

1.35×10-41.54×10-42.04×10-4Second stage optimization

Charge transfer resistance

Rct / Ω·cm2

2.25×1051.83×1051.24×105Second stage optimization
Strength of electric field ε / V·cm-12.03×1062.03×1062.03×106Average of first stage optimization
Kinetic order of H+n0.50.50.5Average of first stage optimization

Current density

Iss / nA·cm-2

1.150.930.74Second stage optimization

Thickness of barrier layer

Lss / nm

2.392.151.93Second stage optimization

Diffusivity of principal defect

D / cm2·s-1

5.21×10-181.54×10-187.30×10-19Second stage optimization
Table 5  Calculated values of various parameters from optimization of the PDM based on the experimental impedance data for 304 stainless steel in pH 13.4 solution at different applied potentials
1 Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
盖喜鹏, 雷 黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646
doi: 10.11902/1005.4537.2020.238
2 Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
刘欣怡, 赵亚州, 张 欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
doi: 10.11902/1005.4537.2020.020
3 Li N, Li Y, Wang S G, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochim. Acta, 2006, 52: 760
doi: 10.1016/j.electacta.2006.06.023
4 Yang S F, Macdonald D D. Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion [J]. Electrochim. Acta, 2007, 52: 1871
doi: 10.1016/j.electacta.2006.07.052
5 Nicic I, Macdonald D D. The passivity of Type 316L stainless steel in borate buffer solution [J]. J. Nucl. Mater., 2008, 379: 54
doi: 10.1016/j.jnucmat.2008.06.014
6 Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
doi: 10.1016/j.corsci.2006.01.009
7 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
doi: 10.1149/1.2127591
8 Lin L F, Chao C Y, Macdonald D D. A point defect model for anodic passive films: II. Chemical breakdown and pit initiation [J]. J. Electrochem. Soc., 1981, 128: 1194
doi: 10.1149/1.2127592
9 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: III. Impedance response [J]. J. Electrochem. Soc., 1982, 129: 1874
doi: 10.1149/1.2124318
10 Macdonald D D, Smedley S I. An electrochemical impedance analysis of passive films on nickel (111) in phosphate buffer solutions [J]. Electrochim. Acta, 1990, 35: 1949
doi: 10.1016/0013-4686(90)87104-A
11 Urquidi-Macdonald M, Real S, Macdonald D D. Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data: II. Transformations in the complex plane [J]. J. Electrochem. Soc., 1986, 133: 2018
doi: 10.1149/1.2108332
12 Macdonald D D. Point defect model of the passive state [A]. MacdonaldJ R, BarsukovE. Impedance Spectroscopy Theory, Experiment, and Applications [M]. 2nd ed., New York: Wiley-Interscience, 2005: 382
13 Sharifi-Asl S, Taylor M L, Lu Z J, et al. Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach [J]. Electrochim. Acta, 2013, 102: 161
doi: 10.1016/j.electacta.2013.03.143
14 Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
15 Hakiki N E, Da Cunha Belo M, Simões A M P, et al. Semiconducting properties of passive films formed on stainless steels: influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145: 3821
doi: 10.1149/1.1838880
16 Di Paola A. Semiconducting properties of passive films on stainless steels [J]. Electrochim. Acta, 1989, 34: 203
doi: 10.1016/0013-4686(89)87086-0
17 Stimming U, Schultze J W. The capacity of passivated iron electrodes and the band structure of the passive layer [J]. Ber. Bunsenges. Phys. Chem., 1976, 80: 1297
doi: 10.1002/bbpc.v80:12
18 Gaben F, Vuillemin B, Oltra R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior [J]. J. Electrochem. Soc., 2004, 151: B595
doi: 10.1149/1.1803562
19 Wagner C. Models for lattice defects in oxide layers on passivated iron and nickel [J]. Ber. Bunsenges. Phys. Chem., 1973, 77: 1090
20 Goossens A, Vazquez M, Macdonald D D. The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution [J]. Electrochim. Acta, 1996, 41: 35
doi: 10.1016/0013-4686(95)00285-M
21 Macdonald D D, Sikora E, Sikora J. The kinetics of growth of the passive film on tungsten in acidic phosphate solutions [J]. Electrochim. Acta, 1998, 43: 2851
doi: 10.1016/S0013-4686(98)00026-7
22 Cheng X Q, Li X G, Yang L X, et al. Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky [J]. J. Wuhan Univ. Technol.: Mater. Sci. Ed., 2008, 23: 574
doi: 10.1007/s11595-006-4574-0
23 Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
doi: 10.1016/S0013-4686(02)00552-2
24 Macdonald D D, Urquidi-Macdonald M. Kramers-Kronig transformation of constant phase impedances [J]. J. Electrochem. Soc., 1990, 137: 515
doi: 10.1149/1.2086490
25 Sharifi-Asl S, Macdonald D D, Almarzooqi A, et al. A comprehensive electrochemical impedance spectroscopic study of passive carbon steel in concrete pore water [J]. J. Electrochem. Soc., 2013, 160: C316
doi: 10.1149/2.022308jes
26 Ferreira M G S, Dawson J L. Electrochemical studies of the passive film on 316 stainless steel in chloride media [J]. J. Electrochem. Soc., 1985, 132: 760
doi: 10.1149/1.2113954
27 Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
doi: 10.1016/j.electacta.2011.07.072
28 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
29 Atrens A, Baroux B, Mantel M. The secondary passive film for type 304 stainless steel in 0.5 M H2SO4 [J]. J. Electrochem. Soc., 1997, 144: 3697
doi: 10.1149/1.1838078
[1] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[2] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[3] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[4] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[5] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[6] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[7] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[9] LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[10] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[11] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[12] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[13] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
No Suggested Reading articles found!