Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 903-910    DOI: 10.11902/1005.4537.2022.272
Current Issue | Archive | Adv Search |
Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy
DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun()
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
Download:  HTML  PDF(9457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new type of Si-Zr composite conversion film was prepared on the surface of ADC12 aluminum alloy by chemical conversion method. The content of aminobissilane was optimized based on the results of copper sulfate dropping test and polarization curve measurement. The microstructure, chemical composition and crystallographic structure of the conversion film were characterized by means of field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The corrosion resistance of the passive film was studied by electrochemical test and neutral salt spray test. The results show that the introduction of aminobissilane can significantly improve the uniformity and compactness of the conversion film; thus aminobissilane greatly improves the corrosion resistance of conversion films; among others, the corrosion resistance of the conversion film with 60% aminobissilane is the best. Compared with the Zr conversion film, the capacitive reactance radius and the low frequency impedance value of the Si-Zr composite conversion film increase by more than 3 times respectively, and in consequence, the life-time of salt spray corrosion resistance increases by more than 20 times.

Key words:  ADC12 aluminum alloy      aminobissilane      silicon-zirconium composite conversion film      corrosion resistance      salt spray test     
Received:  05 September 2022      32134.14.1005.4537.2022.272
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(U1460106)
Corresponding Authors:  CHEN Jun, E-mail: junchen@ahut.edu.cn   

Cite this article: 

DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 903-910.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.272     OR     https://www.jcscp.org/EN/Y2023/V43/I4/903

Fig.1  Polarization curves of blank and ZrCC samples
SampleEcorr / VEpit / VΔE / VIcorr / (A·cm-2)
Blank-1.201-031.63×10-7
ZrCC-1.046-015.86×10-7
20Si-ZrCC-1.043-05.902×10-7
40Si-ZrCC-0.921-0.7660.1551.950×10-7
60Si-ZrCC-0.904-0.7270.1761.44×10-7
80Si-ZrCC-1.046-05.421×10-7
Table 1  Polarization curve data of blank and ZrCC samples
Fig.2  FT-IR spectrum of conversion films
Fig.3  FESEM of zirconium conversion film (a, b) and silicon-zirconium composite conversion film (c-e) and EDS mappings of silicon-zirconium composite conversion film (f)
SampleAlCFNOSiZr
Zr film6.0257.678.13-26.39-1.79
Si-Zr film3.6473.080.980.7519.361.950.23
Table 2  Percentage of elements in different conversion films
Fig.4  XPS spectra of Zr conversion film: (a) survey, (b) Zr 3d, (c), F 1s, (d) Al 2p
Fig.5  XPS spectra of Si-Zr composite conversion film: (a) survey, (b) Al 2p, (c) Zr 3d, (d) Si 2p, (e) O 1s, (f) F 1s
Fig.6  Nyquist (a) and Bode (b, c) plots of blank, Zr film and Si-Zr film
Fig.7  Equivalent circuits for fitting impedance diagrams of blank (a), Zr and Si-Zr conversion films (b)
Sample

Rc

Ω·cm2

CPEc

F·cm-2

nc

CPEdl

F·cm-2

Rct

Ω·cm2

Blank---2.099×10-513.69
Zr film494661.094×10-50.8291.695×10-554226
Si-Zr film4190808.816×10-60.9089.500×10-6167750
Table 3  Fitting results of EIS of blank, Zr film and Si-Zr film
Fig.8  Photos of aluminum alloy substrate (a1-a3), Zr conversion film (b1-b3) and Si-Zr composite conversion film (c1-c3) after salt spray experiment
1 Xi K, Wu H, Zhou C L, et al. Improved corrosion and wear resistance of micro-arc oxidation coatings on the 2024 aluminum alloy by incorporation of quasi-two-dimensional sericite microplates [J]. Appl. Surf. Sci., 2022, 585: 152693
doi: 10.1016/j.apsusc.2022.152693
2 Gong Y B, Wang P, Xu Z X, et al. Effects of phytce acid additives on the characteristics of micro-arc oxidation coatings on 6061 aluminum alloy [J]. Surf. Technol., 2021, 50(12): 381
龚云柏, 王 平, 胥章鑫 等. 植酸添加剂对6061铝合金微弧氧化膜层性能的影响 [J]. 表面技术, 2021, 50(12): 381
3 Zhu W, Chen F R, Luo Y B, et al. Vanadium and tannic acid-based composite conversion coating for 6063 aluminum alloy [J]. Front. Mater., 2021, 8: 802468
doi: 10.3389/fmats.2021.802468
4 Carreira A F, Pereira A M, Vaz E P, et al. Alternative corrosion protection pretreatments for aluminum alloys [J]. J. Coat. Technol. Res., 2017, 14: 879
doi: 10.1007/s11998-017-9922-9
5 Qian X Z, Zhao W E, Zhan W, et al. Formation and corrosion resistance of a novel Co-Ti-Mo composite chromium-free chemical conversion coating on LY12 aluminum alloy [J]. Mater. Corros., 2022, 73: 710
6 Wang Y B, Huang Q Y, Zhou B T, et al. Corrosion protection of 6061 aluminum alloys by sol-gel coating modified with ZnLaAl-LDHs [J]. Coatings, 2021, 11: 478
doi: 10.3390/coatings11040478
7 Ye X L, Chen J. Study on passivation of ADC12 aluminum alloy by self-crosslinking cationic acrylic emulsion [J]. Surf. Technol., 2021, 50(8): 337
叶小乐, 陈 均. 自交联阳离子丙烯酸乳液对ADC12铝合金的钝化研究 [J]. 表面技术, 2021, 50(8): 337
8 Yang Y G, Cao J Y, Wang X Q, et al. Design and performance of Zr- and/or Ti-based chemical conversion coatings for light alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 387
杨延格, 曹京宜, 王兴奇 等. 轻合金锆/钛基转化膜的设计及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 387
doi: 10.11902/1005.4537.2021.301
9 Liu N Y, Gao J G, Tong S, et al. Improvement in corrosion resistance of micro-arc oxidation coating on PVD Ti-coated aluminum alloy 7075 [J]. Int. J. Appl. Ceram. Technol., 2022, 19: 2556
10 Cao J Y, Fang Z G, Chen J H, et al. Preparation and properties of micro-arc oxide film with single dense layer on surface of 5083 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 251
曹京宜, 方志刚, 陈晋辉 等. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 251
doi: 10.11902/1005.4537.2019.069
11 Li F Q, Zhao M H, Zhan Y, et al. Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection [J]. Colloids Surf., 2022, 640A: 128444
12 Minhas B, Dino S, Huang L Y, et al. Active corrosion protection by epoxy coating on Li2CO3-pretreated anodized aluminum alloy 2024-T3 [J]. Front. Mater., 2022, 8: 804328
doi: 10.3389/fmats.2021.804328
13 Milošev I, Frankel G S. Review-conversion coatings based on zirconium and/or titanium [J]. J. Electrochem. Soc., 2018, 165(3): C127
doi: 10.1149/2.0371803jes
14 Peltier F, Thierry D. Review of Cr-free coatings for the corrosion protection of aluminum aerospace alloys [J]. Coatings, 2022, 12: 518
doi: 10.3390/coatings12040518
15 Becker M. Chromate-free chemical conversion coatings for aluminum alloys [J]. Corros. Rev., 2019, 37: 321
doi: 10.1515/corrrev-2019-0032
16 Peng D D, Wu J S, Yan X L, et al. The formation and corrosion behavior of a zirconium-based conversion coating on the aluminum alloy AA6061 [J]. J. Coat. Technol. Res., 2016, 13: 837
doi: 10.1007/s11998-016-9789-1
17 Cerezo J, Vandendael I, Posner R, et al. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys [J]. Appl. Surf. Sci., 2016, 366: 339
doi: 10.1016/j.apsusc.2016.01.106
18 Zhang H H, Zhang X F, Zhao X H, et al. Preparation of Ti-Zr-based conversion coating on 5052 aluminum alloy, and its corrosion resistance and antifouling performance [J]. Coatings (Basel), 2018, 8: 397
19 Zhan W, Qian X Z, Gui B Y, et al. Preparation and corrosion resistance of titanium–zirconium–cerium based conversion coating on 6061 aluminum alloy [J]. Mater. Corros., 2020, 71: 419
doi: 10.1002/maco.201911193
20 Liao Z M, Chen L, Zhu W, et al. Rapid formation of titanium–zirconium-based conversion coating on aluminum alloy at low temperatures [J]. Electroplat. Finish., 2020, 39: 855
廖忠淼, 陈 龙, 祝 闻 等. 铝合金上低温钛锆转化膜快速成膜工艺 [J]. 电镀与涂饰, 2020, 39: 855
21 Khatoon H, Ahmad S. Vanadium pentoxide-enwrapped polydiphenylamine/polyurethane nanocomposite: high-performance anticorrosive coating [J]. ACS Appl. Mater. Interfaces, 2019, 11: 2374
doi: 10.1021/acsami.8b17861
22 Zou H, Wang Z. Poly(2-aminothiazole): An emerging functional polymer [J]. Prog. Org. Coat., 2021, 158: 106345
23 Ding Y K, Chen G M, Ni Z F, et al. Corrosion resistance of silane film modified by hexagonal boron nitride [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 864
丁玉康, 陈国美, 倪自丰 等. 六方氮化硼改性硅烷膜耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 864
doi: 10.11902/1005.4537.2020.176
24 Wang N, Li L, Sun X M, et al. Preparation of PTFE/Al2O3–13% TiO2 composite coating and its corrosion resistance [J]. Electrop. Finish., 2022, 41: 238
王 宁, 李 丽, 孙绪民 等. 聚四氟乙烯/Al2O3-13% TiO2复合涂层的制备及耐蚀性研究 [J]. 电镀与涂饰, 2022, 41: 238
25 Wen J Y, Song G H, Wei X Y, et al. Influence of Cr content on corrosion resistance of composite Ni/Ni-Cr/Ni-Cr-Al-Si films on Cu [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 638
温佳源, 宋贵宏, 韦小园 等. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 638
doi: 10.11902/1005.4537.2021.173
26 Zhang Y G, Chen Y L, Zhang Y, et al. The long-term corrosion performance and adhesion properties of 7B04 aluminum alloy/anodic film/epoxy primer system in acidic NaCl solution [J]. Mater. Corros., 2022, 73: 93
27 Zeng D P, Liu Z Y, Zou L H, et al. Corrosion resistance of epoxy coatings modified by bis-silane prepolymer on aluminum alloy [J]. Coatings, 2021, 11: 842
doi: 10.3390/coatings11070842
[1] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[2] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[3] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[4] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[5] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[6] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[7] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[8] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[9] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[12] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[13] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[14] JIANG Jie, JIANG Jianjun, YANG Lijing, LEI Bufang, ZHAO Yu, LIN Jianqiang, SONG Zhenlun. Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[15] LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
No Suggested Reading articles found!