|
|
Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy |
DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun( ) |
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China |
|
|
Abstract A new type of Si-Zr composite conversion film was prepared on the surface of ADC12 aluminum alloy by chemical conversion method. The content of aminobissilane was optimized based on the results of copper sulfate dropping test and polarization curve measurement. The microstructure, chemical composition and crystallographic structure of the conversion film were characterized by means of field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The corrosion resistance of the passive film was studied by electrochemical test and neutral salt spray test. The results show that the introduction of aminobissilane can significantly improve the uniformity and compactness of the conversion film; thus aminobissilane greatly improves the corrosion resistance of conversion films; among others, the corrosion resistance of the conversion film with 60% aminobissilane is the best. Compared with the Zr conversion film, the capacitive reactance radius and the low frequency impedance value of the Si-Zr composite conversion film increase by more than 3 times respectively, and in consequence, the life-time of salt spray corrosion resistance increases by more than 20 times.
|
Received: 05 September 2022
32134.14.1005.4537.2022.272
|
|
Fund: National Natural Science Foundation of China(U1460106) |
Corresponding Authors:
CHEN Jun, E-mail: junchen@ahut.edu.cn
|
1 |
Xi K, Wu H, Zhou C L, et al. Improved corrosion and wear resistance of micro-arc oxidation coatings on the 2024 aluminum alloy by incorporation of quasi-two-dimensional sericite microplates [J]. Appl. Surf. Sci., 2022, 585: 152693
doi: 10.1016/j.apsusc.2022.152693
|
2 |
Gong Y B, Wang P, Xu Z X, et al. Effects of phytce acid additives on the characteristics of micro-arc oxidation coatings on 6061 aluminum alloy [J]. Surf. Technol., 2021, 50(12): 381
|
|
龚云柏, 王 平, 胥章鑫 等. 植酸添加剂对6061铝合金微弧氧化膜层性能的影响 [J]. 表面技术, 2021, 50(12): 381
|
3 |
Zhu W, Chen F R, Luo Y B, et al. Vanadium and tannic acid-based composite conversion coating for 6063 aluminum alloy [J]. Front. Mater., 2021, 8: 802468
doi: 10.3389/fmats.2021.802468
|
4 |
Carreira A F, Pereira A M, Vaz E P, et al. Alternative corrosion protection pretreatments for aluminum alloys [J]. J. Coat. Technol. Res., 2017, 14: 879
doi: 10.1007/s11998-017-9922-9
|
5 |
Qian X Z, Zhao W E, Zhan W, et al. Formation and corrosion resistance of a novel Co-Ti-Mo composite chromium-free chemical conversion coating on LY12 aluminum alloy [J]. Mater. Corros., 2022, 73: 710
|
6 |
Wang Y B, Huang Q Y, Zhou B T, et al. Corrosion protection of 6061 aluminum alloys by sol-gel coating modified with ZnLaAl-LDHs [J]. Coatings, 2021, 11: 478
doi: 10.3390/coatings11040478
|
7 |
Ye X L, Chen J. Study on passivation of ADC12 aluminum alloy by self-crosslinking cationic acrylic emulsion [J]. Surf. Technol., 2021, 50(8): 337
|
|
叶小乐, 陈 均. 自交联阳离子丙烯酸乳液对ADC12铝合金的钝化研究 [J]. 表面技术, 2021, 50(8): 337
|
8 |
Yang Y G, Cao J Y, Wang X Q, et al. Design and performance of Zr- and/or Ti-based chemical conversion coatings for light alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 387
|
|
杨延格, 曹京宜, 王兴奇 等. 轻合金锆/钛基转化膜的设计及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 387
doi: 10.11902/1005.4537.2021.301
|
9 |
Liu N Y, Gao J G, Tong S, et al. Improvement in corrosion resistance of micro-arc oxidation coating on PVD Ti-coated aluminum alloy 7075 [J]. Int. J. Appl. Ceram. Technol., 2022, 19: 2556
|
10 |
Cao J Y, Fang Z G, Chen J H, et al. Preparation and properties of micro-arc oxide film with single dense layer on surface of 5083 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 251
|
|
曹京宜, 方志刚, 陈晋辉 等. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 251
doi: 10.11902/1005.4537.2019.069
|
11 |
Li F Q, Zhao M H, Zhan Y, et al. Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection [J]. Colloids Surf., 2022, 640A: 128444
|
12 |
Minhas B, Dino S, Huang L Y, et al. Active corrosion protection by epoxy coating on Li2CO3-pretreated anodized aluminum alloy 2024-T3 [J]. Front. Mater., 2022, 8: 804328
doi: 10.3389/fmats.2021.804328
|
13 |
Milošev I, Frankel G S. Review-conversion coatings based on zirconium and/or titanium [J]. J. Electrochem. Soc., 2018, 165(3): C127
doi: 10.1149/2.0371803jes
|
14 |
Peltier F, Thierry D. Review of Cr-free coatings for the corrosion protection of aluminum aerospace alloys [J]. Coatings, 2022, 12: 518
doi: 10.3390/coatings12040518
|
15 |
Becker M. Chromate-free chemical conversion coatings for aluminum alloys [J]. Corros. Rev., 2019, 37: 321
doi: 10.1515/corrrev-2019-0032
|
16 |
Peng D D, Wu J S, Yan X L, et al. The formation and corrosion behavior of a zirconium-based conversion coating on the aluminum alloy AA6061 [J]. J. Coat. Technol. Res., 2016, 13: 837
doi: 10.1007/s11998-016-9789-1
|
17 |
Cerezo J, Vandendael I, Posner R, et al. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys [J]. Appl. Surf. Sci., 2016, 366: 339
doi: 10.1016/j.apsusc.2016.01.106
|
18 |
Zhang H H, Zhang X F, Zhao X H, et al. Preparation of Ti-Zr-based conversion coating on 5052 aluminum alloy, and its corrosion resistance and antifouling performance [J]. Coatings (Basel), 2018, 8: 397
|
19 |
Zhan W, Qian X Z, Gui B Y, et al. Preparation and corrosion resistance of titanium–zirconium–cerium based conversion coating on 6061 aluminum alloy [J]. Mater. Corros., 2020, 71: 419
doi: 10.1002/maco.201911193
|
20 |
Liao Z M, Chen L, Zhu W, et al. Rapid formation of titanium–zirconium-based conversion coating on aluminum alloy at low temperatures [J]. Electroplat. Finish., 2020, 39: 855
|
|
廖忠淼, 陈 龙, 祝 闻 等. 铝合金上低温钛锆转化膜快速成膜工艺 [J]. 电镀与涂饰, 2020, 39: 855
|
21 |
Khatoon H, Ahmad S. Vanadium pentoxide-enwrapped polydiphenylamine/polyurethane nanocomposite: high-performance anticorrosive coating [J]. ACS Appl. Mater. Interfaces, 2019, 11: 2374
doi: 10.1021/acsami.8b17861
|
22 |
Zou H, Wang Z. Poly(2-aminothiazole): An emerging functional polymer [J]. Prog. Org. Coat., 2021, 158: 106345
|
23 |
Ding Y K, Chen G M, Ni Z F, et al. Corrosion resistance of silane film modified by hexagonal boron nitride [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 864
|
|
丁玉康, 陈国美, 倪自丰 等. 六方氮化硼改性硅烷膜耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 864
doi: 10.11902/1005.4537.2020.176
|
24 |
Wang N, Li L, Sun X M, et al. Preparation of PTFE/Al2O3–13% TiO2 composite coating and its corrosion resistance [J]. Electrop. Finish., 2022, 41: 238
|
|
王 宁, 李 丽, 孙绪民 等. 聚四氟乙烯/Al2O3-13% TiO2复合涂层的制备及耐蚀性研究 [J]. 电镀与涂饰, 2022, 41: 238
|
25 |
Wen J Y, Song G H, Wei X Y, et al. Influence of Cr content on corrosion resistance of composite Ni/Ni-Cr/Ni-Cr-Al-Si films on Cu [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 638
|
|
温佳源, 宋贵宏, 韦小园 等. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 638
doi: 10.11902/1005.4537.2021.173
|
26 |
Zhang Y G, Chen Y L, Zhang Y, et al. The long-term corrosion performance and adhesion properties of 7B04 aluminum alloy/anodic film/epoxy primer system in acidic NaCl solution [J]. Mater. Corros., 2022, 73: 93
|
27 |
Zeng D P, Liu Z Y, Zou L H, et al. Corrosion resistance of epoxy coatings modified by bis-silane prepolymer on aluminum alloy [J]. Coatings, 2021, 11: 842
doi: 10.3390/coatings11070842
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|