Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 862-870    DOI: 10.11902/1005.4537.2022.289
Current Issue | Archive | Adv Search |
Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film
REN Huangwei1, LIAO Bokai2, CUI Linjing1, XIANG Tengfei1,3()
1.School of Civil Engineering, Anhui University of Technology, Ma'anshan 243002, China
2.School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Ma'anshan 243002, China
Download:  HTML  PDF(9556KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A stable solid slippery surface (SSS) was fabricated by constructing micro-nano structure on the surface of low carbon steel via electrodeposition method and then lubricant was infused. The corrosion behavior of SSS and the changes of surface morphology and composition after corrosion test under liquid films of different thicknesses (500, 250, 100 and 50 μm) was characterized by means of electrochemical tests, scanning electron microscopy (SEM) and X-ray diffractometer (XRD) etc. The results showed that in the early stage of thin liquid film corrosion, as the thickness of the thin liquid film decreases, the corrosion behavior of SSS shows small differences, and the SSS showed the largest corrosion resistance when the thickness of thin liquid film was 100 μm. After immersion for 1 d, the limited diffusion current density is 4.899×10-6 A·cm-2 (at -1.4 V), and the fitted impedance value reaches 1.54×105 Ω·cm2. Even after soaking for 7 d, it still exhibited an impedance value of 6.98×104 Ω·cm2, and it was hard to detect the formation of corrosion products, demonstrated its excellent stability and corrosion resistance.

Key words:  solid slippery surface      electrochemical test      thin liquid film      corrosion behavior      wettability     
Received:  19 September 2022      32134.14.1005.4537.2022.289
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52201056);Key Project of Natural Science Foundation of Anhui Provincial Department of Education(KJ2021A0377)
Corresponding Authors:  XIANG Tengfei, E-mail: xiangtf@ahut.edu.cn   

Cite this article: 

REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 862-870.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.289     OR     https://www.jcscp.org/EN/Y2023/V43/I4/862

Fig.1  Schematic diagram of preparation process of the solid slippery surface (SSS)
Fig.2  Diagram of thin liquid film test device
Fig.3  Morphology of superhydrophobic surface (a) and SSS (c), CA of superhydrophobic surface (b) and SSS (d), sliding behavior of the SSS (e) and the coating section thickness and energy spectrum scanning results (f)
Fig.4  Cathodic polarization curves of SSS at different soaking time under 500 μm (a), 250 μm (b), 100 μm (c) and 50 μm (d) liquid film thicknesses and -1.4 V ultimatet diffusion current of different liquid film thicknesses at 1 d (e) and different soaking time under 100 μm liquid film thickness (f)
Fig.5  Nyquist (a, c, e, g) and Bode-phase plots (b, d, f, h) of the SSS with different soaking times at 500 μm (a, b), 250 μm (c, d), 100 μm (e, f) and 50 μm (g, h) liquid film thicknesses
Fig.6  Equivalent circuit diagram of the SSS at 500, 250, 100 μm (a) and 50 μm (b) liquid film thicknesses
Thickness / μmt / dR1 / Ω·cm2Q1 / F·cm2n1R2 / Ω·cm2Q2 / F·cm2n2R3 / Ω·cm2W / Ω·cm2
500158.872.12×10-60.772.18×1033.45×10-60.458.30×105-
259.786.17×10-60.751.34×1037.20×10-60.538.08×105-
459.318.66×10-60.731.17×1031.03×10-60.617.84×105-
761.501.03×10-60.741.02×1034.58×10-60.467.41×105-
250188.485.82×10-60.892.56×1032.37×10-60.471.61×106-
289.612.65×10-60.801.74×1031.66×10-50.365.05×105-
490.491.20×10-50.791.48×1033.11×10-50.493.26×105-
792.573.76×10-50.831.39×1034.93×10-50.357.79×104-
1001130.62.88×10-60.821.54×1055.24×10-60.783.68×106-
2130.54.07×10-60.828.92×1043.70×10-60.693.67×106-
4133.15.78×10-60.788.53×1042.72×10-50.481.16×106-
7134.61.01×10-50.726.98×1042.44×10-50.696.49×105-
501157.42.57×10-60.787.53×1031.72×10-60.627.06×1052.86×10-5
2158.57.25×10-60.766.32×1031.50×10-60.375.21×1053.27×10-5
4159.28.78×10-60.794.69×1032.42×10-50.351.54×1053.69×10-5
7159.99.46×10-50.803.13×1031.10×10-50.385.29×1044.44×10-5
Table 1  Electrochemical parameters of the SSS with different soaking times at different liquid film thicknesses
Fig.7  CA and SA of the SSS after corrosion under different liquid film thicknesses (a) and time-delayed sliding image of the SSS with a liquid film thickness of 100 μm (b)
Fig.8  Surface morphology of corroded samples at 500 μm (a, e), 250 μm (b, f), 100 μm (c, g) and 50 μm (d, h) liquid film thicknesses.
Thickness μmNiCOFe
50093.704.890.720.69
25090.297.551.490.68
10092.155.301.471.08
5094.473.831.190.51
Table 2  Distribution and content of elements on sample surface after corrosion at different liquid film thicknesses
Fig.9  XRD patterns of corroded samples with different liquid film thicknesses
Fig.10  Anti-corrosion mechanism schematic diagram of the SSS
1 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
2 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
3 Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer [J]. Chin. J. Eng., 2018, 40: 649
于 阳, 卢 琳, 李晓刚. 微区电化学技术在薄液膜大气腐蚀中的应用 [J]. 工程科学学报, 2018, 40: 649
4 Zhang J B, Wang J, Wang Y H, et al. The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion [J]. Mar. Sci., 2005, 29(7): 17
张际标, 王 佳, 王燕华 等. 海盐粒子沉积下碳钢的大气腐蚀初期行为 [J]. 海洋科学, 2005, 29(7): 17
5 Liu Z J, Wang W, Wang J, et al. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method [J]. Corros. Sci., 2014, 80: 523
doi: 10.1016/j.corsci.2013.11.012
6 Wang J. The Role of Liquid Film Pattern in Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2017
王 佳. 液膜形态在大气腐蚀中的作用 [M]. 北京: 化学工业出版社, 2017
7 Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
doi: 10.1016/j.corsci.2011.01.031
8 Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion [J]. Materials, 2019, 12: 1065
doi: 10.3390/ma12071065
9 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
10 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
11 Huang H L, Pan Z Q, Guo X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer [J]. Trans. Nonferrous. Met. Soc. China, 2014, 24: 285
doi: 10.1016/S1003-6326(14)63059-4
12 Zhang X X, Gao Z M, Hu W B, et al. Correlation between corrosion behavior and image information of Q235 steel beneath thin electrolyte film [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 444
张新新, 高志明, 胡文彬 等. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 444
doi: 10.11902/1005.4537.2017.068
13 Lin X Z, Yang L, Mei Y J, et al. Corrosion electrochemical behavior beneath thin electrolyte layer of potassium formate solution of Cd-plated 4130 steel used for aircraft landing gear [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 567
林修洲, 杨 丽, 梅拥军 等. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 567
doi: 10.11902/1005.4537.2016.221
14 Lin C, Xiao Z Y. Electrochemical corrosion behavior of carbon steel under thin electrolyte layer containing NaCl [J]. Corros. Prot., 2014, 35: 316
林 翠, 肖志阳. 碳钢在NaCl薄液膜下的电化学腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 316
15 Fu Y K, Lin X Z, Zhang R H, et al. Corrosion electrochemistry behavior of 2024 aluminum alloy under thin electrolyte layers of potassium acetate deicing fluid [J]. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.), 2020, 33(1): 8
付英奎, 林修洲, 张润华 等. 醋酸钾型除冰液薄液膜厚度对飞机用2024铝合金腐蚀电化学行为的影响 [J]. 四川轻化工大学学报(自然科学版), 2020, 33(1): 8
16 Hu L L, Zhao X Y, Liu P, et al. Effect of AC electric field and thickness of electrolyte film on corrosion behavior of A6082-T6 al alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 342
胡露露, 赵旭阳, 刘 盼 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 342
doi: 10.11902/1005.4537.2019.234
17 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
18 Zhang J L, Gu C D, Tu J P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection [J]. ACS Appl. Mater. Interfaces, 2017, 9: 11247
doi: 10.1021/acsami.7b00972
19 Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps [J]. Nature, 2016, 531: 78
doi: 10.1038/nature16956
20 Zhang H L, Ou J F, Fang X Z, et al. Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation [J]. Chem. Eng. J., 2022, 429: 132539
doi: 10.1016/j.cej.2021.132539
21 Ouyang Y B, Zhao J, Qiu R, et al. Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel [J]. Surf. Coat. Technol., 2020, 381: 125143
doi: 10.1016/j.surfcoat.2019.125143
22 Wei D S, Wang J G, Li S Y, et al. Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy [J]. Chem. Eng. J., 2021, 425: 130450
doi: 10.1016/j.cej.2021.130450
23 Xiang T F, Ren H W, Zhang Y L, et al. Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism [J]. Mater. Des., 2022, 215: 110450
doi: 10.1016/j.matdes.2022.110450
24 Van den Steen N, Simillion H, Dolgikh O, et al. An integrated modeling approach for atmospheric corrosion in presence of a varying electrolyte film [J]. Electrochim. Acta, 2016, 187: 714
doi: 10.1016/j.electacta.2015.11.010
25 Zhao Q Y, Hui X R, Wang Y N, et al. Study on the inhibited corrosion of low alloy steel by biomineralized film in simulative marine atmosphere [J]. Surf. Technol., 2021, 50(6): 272
赵倩玉, 惠芯蕊, 王亚楠 等. 模拟海洋大气环境下生物矿化膜抑制低合金钢腐蚀行为研究 [J]. 表面技术, 2021, 50(6): 272
26 Nie L L. Corrosion behavior of pure magnesium, AZ9ID and ZE41 magnesium alloy under thin electrolyte laver based on in situ and nondestructive electrochemical techniques [D]. Hangzhou: Zhejiang University, 2016
聂林林. 基于原位无损的电化学技术对纯镁和镁合金AZ91D及ZE41薄液膜腐蚀行为研究 [D]. 杭州: 浙江大学, 2016
27 Xiang T F, Liu J, Liu Q W, et al. Self-healing solid slippery surface with porous structure and enhanced corrosion resistance [J]. Chem. Eng. J., 2021, 417: 128083
doi: 10.1016/j.cej.2020.128083
28 She Z X, Li Q, Zhang L W, et al. Investigation of water transportation behavior of polypropylene coating by using electrochemical impedance spectrum [J]. Surf. Technol., 2021, 50(2): 321
[1] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[2] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[3] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[4] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[5] WANG Li, MA Li, LEI Li, CUI Zhongyu. Research Progress of Underwater Bionic Antifouling Technology Based on Surface Microtopography Replication and Wettability Control[J]. 中国腐蚀与防护学报, 2023, 43(2): 242-250.
[6] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[7] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[9] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[10] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[11] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[12] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[14] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[15] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
No Suggested Reading articles found!