Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 921-928    DOI: 10.11902/1005.4537.2021.308
Current Issue | Archive | Adv Search |
Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone
ZHAO Yi1, CAO Jingyi1, FANG Zhigang1, FENG Yafei1, HAN Zhuo2, MENG Fandi2(), WANG Zhaodong3, WANG Fuhui2
1. Unit 92228, People's Liberation Army, Beijing 100072, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 921-928.

Download:  HTML  PDF(13226KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of A517Gr. Q steel was studied by mass loss method, SEM, EDS, XRD, and FT-IR in a cyclic wet/dry testing chamber, which was specially designed to simulate the corrosion condition of marine splash zone i.e. cyclically wetting in 3.5%NaCl solution and drying in atmospheres with humidity of either (62±5)% or (83±5)%. The results show that A517 steel is suffered from serious corrosion in the simulated environments of marine splash zone. The corrosion mass loss increases with time, while the average corrosion rate increases first and then stabilizes. The corrosion products are all composed of γ-FeOOH, β-FeOOH, α-FeOOH and Fe3O4. In the condition when the chamber atmosphere with humidity of 62%RH, the electrolyte film formed on the steel surface after immersion can be maintained only for a shorter period, as a result, the steel surface undergoes distinct dry and wet changes, and the formed rust scale is porous with obviously high amount of β-FeOOH, which is of high cathode oxidation activity, thus the steel presents much severe non-uniform corrosion. On the other hand, when the chamber atmosphere with humidity of 83%RH, the corrosion products scale is much dense and uniform with higher amount of Fe3O4, therefore, exhibits a blocking effect on the attack of aggressive Cl- to certain extent.

Key words:  marine steel      simulated splashing zone      corrosion behavior     
Received:  03 November 2021     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2019YFC0312100)
About author:  MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.308     OR     https://www.jcscp.org/EN/Y2022/V42/I6/921

Fig.1  Metallographic structure of A517Gr.Q low alloy steel
Fig.2  Schematic diagrams of experimental devices for corrosion tests in simulated marine splash zone (a) and full immersion zone (b)
Fig.3  Mass loss (a) and corrosion rate (b) of A517Gr.Q steel after corrosion for different time
Fig.4  Macroscopic morphologies of A517Gr.Q steel after corrosion for 7 d (a, e), 14 d (b, f), 28 d (c, g) and 56 d (d, g) under the conditions of 62%RH (a-d) and 83%RH (e-h)
Fig.5  Surface morphologies of A517Gr.Q steel after removal of corrosion product layers formed during corrosion for 7 d (a, b) and 56 d (c, d) under the conditions of 62%RH (a, c) and 83%RH (b, d)
Fig.6  SEM surface morphologies of A517Gr.Q steel after corrosion for 7 d (a1, a2), 14 d (b1, b2), 28 d (c1, c2) and 56 d (d1, d2) under two conditions of 62%RH (a1-d1) and and 83%RH (a2-d2)
Fig.7  Cross-sectional morphologies of A517Gr.Q steel after corrosion for 7 d (a1, a2), 14 d (b1, b2) and 56 d (c1, c2) under two conditions of 62%RH (a1-c1) and 83%RH (a2-c2)
Fig.8  XRD patterns (a, b) and FTIR results (c, d) of the corrosion product films formed on A517Gr.Q steel after corrosion for different time under two conditions of 62%RH (a, c) and 83%RH (b, d)
HumidityPeriodComposition
62%RH7 dγ-FeOOH, α-FeOOH less Fe3O4 more β-FeOOH
14 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
28 dγ-FeOOH, α-FeOOH、Fe3O4, β-FeOOH
56 dγ-FeOOH, α-FeOOH, Fe3O4
83%RH7 dγ-FeOOH, Fe3O4, β-FeOOH
14 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
28 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
56 dγ-FeOOH, α-FeOOH、Fe3O4, β-FeOOH
Table 1  Compositions of corrosion products of A517Gr.Q steel under two humidity conditions
[1] Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, (1): 1
(刘振宇, 唐帅, 陈俊 等. 海洋平台用钢的研发生产现状与发展趋势 [J]. 鞍钢技术, 2015, (1): 1)
[2] Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
(王佳, 孟洁, 唐晓 等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1)
[3] Yang Y G, Cui Z Y, Chen J, et al. Influence of hydrostatic pressure on the pitting behavior of Fe-20Cr alloy [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 415
(杨延格, 崔中雨, 陈杰 等. 静水压力对Fe-20合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 415)
[4] Zheng Z B, Zheng Y G, Zhou X, et al. Determination of the critical flow velocities for erosion-corrosion of passive materials under impingement by NaCl solution containing sand [J]. Corros. Sci., 2014, 88: 187
doi: 10.1016/j.corsci.2014.07.043
[5] Zhang P H, Wang W, Guo W M, et al. Corrosion behavior of long-size marine steel samples in tropical sea area [J]. Equip. Environ. Eng., 2017, 14(2): 77
(张彭辉, 王炜, 郭为民 等. 海工钢在热带海域长尺试验腐蚀行为研究 [J]. 装备环境工程, 2017, 14(2): 77)
[6] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
(郭为民, 孙明先, 邱日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313)
[7] Ma S D, Liu X, Wang Z D, et al. Characterization of seawater corrosion interface of zinc coated steel plate in Zhong-gang harbor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 585
(马士德, 刘欣, 王在东 等. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 585)
[8] Wan J J. Research on the corrosion behaviors and mechanism of A517Gr.Q steel in simulated seawater[D]. Xi'an: Xi'an University of Technology, 2017
(万金剑. 高强钢A517Gr. Q在模拟海水中的腐蚀行为及机理研究[D]. 西安: 西安理工大学, 2017)
[9] Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of Quenching-Partitioning-Tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
(翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398)
[10] Zhang X, Xu X Q, Ma F. Research on high-strength steel used for offshore engineering [J]. Pet. Tubular Goods Instrum., 2015, 1(1): 9
(张翔, 徐秀清, 马飞. 国内外海洋工程用高强钢研究进展 [J]. 石油仪器, 2015, 1(1): 9)
[11] Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
(刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679)
[12] Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel-A literature review [J]. Int. J. Min. Met. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
[13] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
[14] Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products [J]. Corros. Sci., 1991, 32: 1295
doi: 10.1016/0010-938X(91)90049-U
[15] Rincón A, de Rincón O T, Haces C, et al. Evaluation of steel corrosion products in tropical climates [J]. Corrosion, 1997, 53: 835
doi: 10.5006/1.3290268
[16] Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
[17] Xiao H G. Mechanism of formation and evolution process of akaganeite on Q235 during marine atmospheric corrosion [D]. Shenyang: University of Chinese Academy of Sciences, 2017
(肖海刚. 海洋大气腐蚀中β-FeOOH在Q235表面形成及演化机制研究 [D]. 沈阳: 中国科学院大学, 2017)
[1] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[5] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[6] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[8] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[9] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[10] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[11] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[12] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[13] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[14] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[15] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
No Suggested Reading articles found!