Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 569-577    DOI: 10.11902/1005.4537.2022.229
Current Issue | Archive | Adv Search |
Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment
CHEN Qingguo1, TANG Quanhong1, QIN Zhenjie1, LI Yifan2, LI Lei3, LI Xuanpeng3(), YUAN Juntao3, SU Hang3, FU Anqing3
1.PetroChina Tarim Oilfield Company, Korla 841000, China
2.The 12th Oil Production Plant of China National Petroleum Corporation Changqing Oilfield Company, Xi'an 710014, China
3.State Key Laboratory for Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
Download:  HTML  PDF(13007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The applicability of hot-dip aluminum (HDA) coating in oilfield reboiler tube bundles is studied by means of micro-morphological observation, polarization curve test, and 240 ℃-salt deposited-CO2/O2 multi-degree coupling environment simulation testing in this work. The HDA sample is mainly composed of pure Al outer layer and tongue-shaped Fe2Al5 inner alloy layer, and the thickness is between 150 and 200 μm. The polarization curves, which measured at 30 ℃ in simulated oilfield water, show that the corrosion current density of the HDA sample is about 300 times lower than that of 20#, and display excellent corrosion resistance. The simulated results at high-temperature-high-pressure environment show that the uniform corrosion rate of 20# steel in extreme environment is 0.68±0.04 mm/a, the maximum pitting depth is 70.5 μm in 240 ℃-salt deposited-CO2/O2 multi-degree coupling environment. In addition, the corrosion scales formed on the surface are consisted Fe3O4 and Fe2O3, and some cracks can be detected in the scales. However, the corrosion rate of the hot-dip aluminum coating is 0.08±0.02 mm/a, the corrosion mainly occurs in the pure Al layer, and the corresponding corrosion scale is Al(OH)3 after simulated testing. The comprehensive results show that the hot-dip aluminum coating exhibits excellent anti-corrosion performance under this complex environment.

Key words:  hot-dip aluminum coating      20# steel      heat exchanger tube bundles      electrochemical testing      high-temperature-high-pressure simulation test     
Received:  13 July 2022      32134.14.1005.4537.2022.229
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(21908250);Ningbo Science and Technology Innovation 2025 Major Special Project(2020Z108)
Corresponding Authors:  LI Xuanpeng, E-mail: lixuanpeng127@cnpc.com.cn

Cite this article: 

CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 569-577.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.229     OR     https://www.jcscp.org/EN/Y2023/V43/I3/569

Fig.1  Cross-sectional image of 20# steel sample with HDA coating
Fig.2  Cross-sectional image (a) of HDA coating, and corresponding EDS element mappings of C (b), O (c), Al (d) and Fe (e)
Fig.3  XRD patterns of HDA coating (a) and 20# steel (b) before/after and after high-temperature-high-pressure simulation test, respectively
Fig.4  Polarization curves of 20# steel and HDA coating
SpecimenEcorr / mVVS.Ag/AgClIcorr / μA·cm-2
20#-658.9817.95
HDA coating-680.580.058
Table 1  Fitting electrochemical parameters for 20# steel and HDA coating
Fig.5  Macro-morphologies of 20# steel before (a) and after (b) removing corrosion scale, morphology of maximum pit (c)
Fig.6  General view (a) and locally enlarged image (b) of 20# steel after high-temperature-high-pressure simulation test
Fig.7  Cross-section image (a) and locally enlarged image (b) of 20# steel after high-temperature-high-pressure simulation test
Fig.8  Cross-sectional image (a) of 20# steel after high-temperature-high-pressure simulation test, and EDS element mappings of C (b), O (c) and Fe (d)
Fig.9  Macro-morphology (a), micro-morphology (b) and locally enlarged view (c) of the corrosion scale formed on HDA coating after corrosion test
Fig.10  Cross-sectional morphology (a) and locally enlarged view (b) of HDA coating after corrosion test
Fig.11  Cross-sectional image (a) of HDA coating after corrosion test, and corresponding EDS element mappings of C (b), O (c), Al (d) and Fe (e)
1 Mo Y Q, Sun L, Hou Y H, et al. Heat exchanger failure cases statistics analysis in refinery [J]. Guangzhou Chem. Ind., 2016, 44(20): 129
莫烨强, 孙 亮, 侯艳宏 等. 炼厂换热器腐蚀失效案例统计分析 [J]. 广州化工, 2016, 44(20): 129
2 Wang Y Z. Causes and countermeasures for corrosion of tube bundles in the bottom reboiler of condensate stabilizer tower [J]. Chem. Enterp. Manage., 2014, (29): 187
王永忠. 凝析油稳定塔塔底重沸器管束腐蚀原因及对策 [J]. 化工管理, 2014, (29): 187
3 Wang Z B. Application of electroless-plated Ni-P alloy to improve the corrosion resistance of stabilizer reboiler [J]. Petrochem. Corros. Prot., 2002, 19(6): 23
王忠滨. 化学镀镍磷合金提高稳定塔重沸器耐蚀性能 [J]. 石油化工腐蚀与防护, 2002, 19(6): 23
4 Katayama H, Kuroda S. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area [J]. Corros. Sci., 2013, 76: 35
doi: 10.1016/j.corsci.2013.05.021
5 Liu Y, Li G X, Zheng Y R. Influence of rare earth yttrium on the structure and corrosion resistance of hot-dip aluminum coating [J]. Surf. Technol., 2021, 50(9): 286
刘 艺, 李国喜, 郑毅然. 稀土Y对热浸镀铝镀层组织及耐蚀性的影响 [J]. 表面技术, 2021, 50(9): 286
6 Yu S X, Xia Y, Yao M. Effect of rare earth element cerium on properties and microstructure of hot dip aluminum coating on Q235 Steel [J]. Mater. Mech. Eng., 2006, 30(6): 77
于升学, 夏 原, 姚 枚. 稀土铈对热浸镀铝层组织和性能的影响 [J]. 机械工程材料, 2006, 30(6): 77
7 Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surf. Coat. Technol., 2015, 262: 210
doi: 10.1016/j.surfcoat.2014.12.054
8 Lemmens B, Gonzalez Garcia Y, Corlu B, et al. Study of the electrochemical behaviour of aluminized steel [J]. Surf. Coat. Technol., 2014, 260: 34
doi: 10.1016/j.surfcoat.2014.06.064
9 Panossian Z, Mariaca L, Morcillo M, et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere [J]. Surf. Coat. Technol., 2005, 190: 244
doi: 10.1016/j.surfcoat.2004.04.023
10 Kainuma S, Yang M Y, Gao Y, et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment [J]. Constr. Build. Mater., 2021, 280: 122516
doi: 10.1016/j.conbuildmat.2021.122516
11 Xu X Q, Du X Y, Suo T, et al. Corrosion behavior of hot-dipped aluminum coating in ammonium chloride environment [J]. Surf. Technol., 2019, 48(5): 16
徐秀清, 杜小英, 索 涛 等. 热浸铝镀层在氯化铵环境中的腐蚀行为研究 [J]. 表面技术, 2019, 48(5): 16
12 Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
doi: 10.1016/j.apsusc.2018.10.237
13 Han S L, Li H L, Wang S M, et al. Effects of temperature on hot-dip aluminizing process for Preparing hydrogen/tritium permeation barrier [J]. Met. Funct. Mater., 2010, 17(1): 34
韩石磊, 李华玲, 王树茂 等. 温度对热浸铝及后续扩散中镀层的影响 [J]. 金属功能材料, 2010, 17(1): 34
14 Cheng W J, Wang C J. Growth of intermetallic layer in the aluminide mild steel during hot-dipping [J]. Surf. Coat. Technol., 2009, 204: 824
doi: 10.1016/j.surfcoat.2009.09.061
15 He S, Sun Y J, Zhang Z H, et al. Corrosion behavior of 20# steel in alkanolamine solution mixed with ionic liquid containing saturated CO2 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 309
贺 三, 孙银娟, 张志浩 等. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 309
16 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
17 Liu X F, Wang C Y, Zhou J F, et al. Corrosion mechanism of air cooler in a CO2 removal system with amine solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 389
刘骁飞, 王春雨, 周俊锋 等. 胺液脱除CO2系统空冷器腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2021, 41: 389
doi: 10.11902/1005.4537.2020.088
18 Gao Q Y, Xu Y X, Hu P W, et al. Corrosion and protection technique of regeneration tower bottom reboiler in natural gas purification unit [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 699
高秋英, 徐亦璇, 胡鹏伟 等. 天然气再生塔底重沸器腐蚀与防护技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 699
doi: 10.11902/1005.4537.2021.224
19 Hua Y, Yue X Q, Liu H F, et al. The evolution and characterisation of the corrosion scales formed on 3Cr steel in CO2-containing conditions relevant to geothermal energy production [J]. Corros. Sci., 2021, 183: 109342
doi: 10.1016/j.corsci.2021.109342
20 Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2- water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
21 Ma Z H, Sun Y T, Lin T, et al. Study on corrosion behavior of different steels in multiple thermal fluids [J]. Petrochem. Ind. Appl., 2012, 31(9): 60
马增华, 孙永涛, 林 涛 等. 多元热流体中不同钢材的腐蚀行为研究 [J]. 石油化工应用, 2012, 31(9): 60
22 Wan J C, Fu C Y, Ma Z H, et al. Development of corrosion in oil and gas well with high temperature and high pressure CO2/O2 [J]. Total Corros. Control, 2014, 28(2): 39
万金成, 付朝阳, 马增华 等. 油气井高温高压CO2/O2腐蚀研究进展 [J]. 全面腐蚀控制, 2014, 28(2): 39
23 Hua Y, Barker R, Neville A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments [J]. Appl. Surf. Sci., 2015, 356: 499
doi: 10.1016/j.apsusc.2015.08.116
24 Leng J H, Cheng Y F, Liao K X, et al. Synergistic effect of O2-Cl- on localized corrosion failure of L245N pipeline in CO2-O2-Cl- environment [J]. Eng. Fail. Anal., 2022, 138: 106332
doi: 10.1016/j.engfailanal.2022.106332
25 Foley R T, Nguyen T H. The chemical nature of aluminum corrosion: V. Energy transfer in aluminum dissolution [J]. J. Electrochem. Soc., 1982, 129: 464
doi: 10.1149/1.2123881
26 Nguyen T H, Foley R T. The chemical nature of aluminum corrosion: II. The initial dissolution step [J]. J. Electrochem. Soc., 1982, 129: 27
doi: 10.1149/1.2123768
[1] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[2] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[3] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[4] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[5] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] Fengping WANG,Lan LIU,Yanwei DING,Suijun HU,Zhaobin LIU,Dan LIU,Li ZHANG. Simulation of Carbon Steel Corrosion in Oil-gas Field Produced Waters Containing Hydrogen Sulfide[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
No Suggested Reading articles found!