|
|
Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution |
YANG Xinyu1,2, LI Zhen1, DUAN Tigang1( ), HUANG Guosheng1, MA Li1, LIU Feng1, JIANG Dan1 |
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China 2.College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China |
|
|
Abstract A pre-chemical conversion film on the inner walls of 70Cu-30Ni alloy pipeline was first prepared with a flowing FeSO4 solution, and then of which the erosion corrosion behavior in flowing seawater of various speeds was investigated by means of seawater circulation loop. The result showed that a chemical conversion film is obtained during the immersing- and flushing-process of the 200 mg/L FeSO4 solution in conditions: flowing speed 0.5 m/s, pH 6.0, at 25 °C for 30 d, which is a composite film composed of an inner layer of NiO-Ni(OH)2, a compact middle layer of Cu2O-FeOOH and a loose outer layer of Fe2O3-FeOOH. Long-term seawater erosion corrosion test results showed that being suffered from flowing sea water of 0.5 and 1.5 m/s, the chemical conversion film covered pipe lines display relative sound anticorrosion performance with only slightly thinning of the top loose layer of the film, while with the increasing seawater flowing rate up to 2.5 m/s the loose layer on top of the conversion film is significantly thinned with locally spalling off, thus exposing the compact middle layer underneath. XPS analysis results showed that the chemical conversion films had been suffered from erosion corrosion of high-speed flowing seawater display higher amount of Ni, Cu2O and FeOOH on the conversion film surface. Electrochemical impedance results showed that the charge transfer resistances of the chemical conversion films varied in the following descending order: from 2.28×105 Ω·cm2, 8.77×104 Ω·cm2 to 6.51×104 Ω·cm2, after being subjected to erosion-corrosion test by seawater of flowing speeds of 0.5, 1.5 to 2.5 m/s, respectively.
|
Received: 19 May 2022
32134.14.1005.4537.2022.156
|
|
Corresponding Authors:
DUAN Tigang, E-mail: duantigang@sunrui.net
|
1 |
Huang L Q, Wu X W. Application of the ablate pipe in the marine seawater pipe system [J]. Ship Boat, 2011, 22(1): 40
|
|
黄璐琼, 武兴伟. 铜镍合金管在舰船海水管系中的应用 [J]. 船舶, 2011, 22(1): 40
|
2 |
Guo F, Yuan F S, Wang T T. Market analysis and development ideas of copper-alloy condenser tube in our country [J]. Nonferrous Met. Eng. Res., 2015, 36(5): 37
|
|
郭 峰, 袁孚胜, 王彤彤. 我国铜合金冷凝管市场分析及发展思路 [J]. 有色冶金设计与研究, 2015, 36(5): 37
|
3 |
Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
|
|
陆 菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
|
4 |
Chang Q P, Chen Y Y, Song F, et al. Corrosion properties of B30 Cu-Ni alloy and 316L stainless steel in a heat pump system [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 544
|
|
常钦鹏, 陈友媛, 宋 芳 等. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 34: 544
doi: 10.11902/1005.4537.2013.221
|
5 |
Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
|
|
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
|
6 |
Asrar N, Malik A U, Ahmad S, et al. Early failure of cupro-nickel condenser tubes in thermal desalination plant [J]. Desalination, 1998, 116: 135
doi: 10.1016/S0011-9164(98)00190-8
|
7 |
Liao Q H. The analysis on the reason of earlier corrosion invalidation of Bfe30-1-1 white brown pipe [J]. Northwest China Electr. Power, 2004, 32(4): 70
|
|
廖庆华. Bfe30-1-1白铜管早期腐蚀失效原因分析 [J]. 西北电力技术, 2004, 32(4): 70
|
8 |
Wang H T, Qi L M, Wang Y. Cause analysis to copper pipe corrosion of No. 3 unit condenser, Haibowan Power Plant [J]. Inner Mongolia Electr. Power, 2007, 25(): 22
|
|
王海涛, 祁利明, 王 勇. 海勃湾发电厂3号机组凝汽器铜管腐蚀原因分析 [J]. 内蒙古电力技术, 2007, 25(): 22
|
9 |
Sang J Z, Liu K C, Wang X P, et al. Cause analysis and prevention measures on corrosion of white copper condenser tubes [J]. Turb. Technol., 2009, 51: 393
|
|
桑俊珍, 刘克成, 王晓攀 等. 凝汽器白铜管腐蚀原因分析及防止措施 [J]. 汽轮机技术, 2009, 51: 393
|
10 |
Fang G Q, Yang H, Yang R. Comparison analysis and discussion of shell side flow and heat transfer by CFD and HTRI [J]. Dev. Appl. Mater., 2016, 31(2): 10
|
|
方国强, 杨 辉, 杨 瑞. 冷凝器传热管腐蚀失效分析 [J]. 材料开发与应用, 2016, 31(2): 10
|
11 |
Zhu X L, Lin L Y, Lei T Q. Process of formation of corrosion films on alloy 70Cu-30Ni seawater [J]. Acta Metall. Sin., 1997, 33: 1256
|
|
朱小龙, 林乐耘, 雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程 [J]. 金属学报, 1997, 33: 1256
|
12 |
Liu S F, Lin L Y. Transforming behavior of surface film of Cu-Ni alloy exposed to seawater [J]. Chin. J. Mater. Res., 1998, 12: 20
|
|
刘少峰, 林乐耘. Cu-Ni合金表面膜在海水中的转化行为 [J]. 材料研究学报, 1998, 12: 20
|
13 |
Hua Q. Studies on B30 copper nickel alloy corrosion product film in artificial seawater [D]. Harbin: Harbin Engineering University, 2014
|
|
华 清. B30铜镍合金在人工海水中腐蚀产物膜的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014
|
14 |
Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
|
15 |
Li X, Guo J K, Zhao Y. Comparison and analysis of condenser tube film quality with different film forming agent [J]. North China Electr. Power, 2006, (3): 13
|
|
李 兴, 郭军科, 赵 迎. 凝结器铜管不同成膜剂膜质的比较分析 [J]. 华北电力技术, 2006, (3): 13
|
16 |
Kang T Y, Yang S D. Application and study of FeSO4 film for condenser copper tube [J]. Corros. Sci. Prot. Technol., 2004, 16: 57
|
|
康桃英, 杨尚东. 凝汽器铜管FeSO4成膜的应用与研究 [J]. 腐蚀科学与防护技术, 2004, 16: 57
|
17 |
Chen G, Zhang Y X, Liu H B. The principles and implementation of film coating technology with ferrous sulfate to condenser brass pipes [J]. Northeast Electr. Power Technol., 2005, 26(2): 34
|
|
陈 刚, 张羽翔, 刘宏斌. 凝汽器铜管硫酸亚铁镀膜原理与实践 [J]. 东北电力技术, 2005, 26(2): 34
|
18 |
Pearson C. Role of iron in the inhibition of corrosion of marine heat exchangers-a review [J]. Br. Corros. J., 1972, 7: 61
doi: 10.1179/000705972798323288
|
19 |
Beccaria A M, Crousier J. Influence of iron addition on corrosion layer built up on 70Cu-30Ni alloy in sea water [J]. Br. Corros. J., 1991, 26: 215
doi: 10.1179/000705991798269189
|
20 |
Hargrave R E. Unusual failures involving copper deposition in boiler tubing [J]. Corrosion, 1991, 47: 555
doi: 10.5006/1.3585292
|
21 |
Ma Q G, Xiao W, Chen S X, et al. Cathodic protection of pure iron for B10 and B30 copper alloys in simulated marine environment [J]. Corros. Prot., 2016, 37: 793
|
|
马启国, 肖 稳, 陈散兴 等. 纯铁对B10和B30铜合金在模拟海洋环境中的阴极保护 [J]. 腐蚀与防护, 2016, 37: 793
|
22 |
Shi H X. Research on Fe2SO4 once filming technology for copper tubes of small batch [J]. Hebei Electr. Power, 2003, 22(1): 21
|
|
史海象. 小批量铜管Fe2SO4一次成膜技术研究 [J]. 河北电力技术, 2003, 22(1): 21
|
23 |
North R F, Pryor M J. The protection of Cu by ferrous sulphate additions [J]. Corros. Sci., 1968, 8: 149
doi: 10.1016/S0010-938X(68)80197-0
|
24 |
Wang S. Research on Fe2SO4 once filming technology for copper tubes [J]. Inner Mongolia Sci. Technol. Econ., 2007, (5): 92
|
|
王 栓. 铜管Fe2SO4一次成膜技术研究 [J]. 内蒙古科技与经济, 2007, (5): 92
|
25 |
Deng C P, Huang B Y, Yin Z M, et al. The corrosion mechanism of failure of copper-nickel condenser tubes coated by ferrisulphas [J]. Nat. Sci. J. Xiangtan Univ., 2006, 28(4): 85
|
|
邓楚平, 黄伯云, 尹志民 等. 硫酸亚铁成膜失效的镍白铜冷凝管腐蚀机理分析 [J]. 湘潭大学自然科学学报, 2006, 28(4): 85
|
26 |
Wang Z Y, Wang P. An approach to enhancing film formation quality on copper tubes in condenser by using ferrous sulfate only at once [J]. Therm. Power Gener., 2010, 39(6): 71
|
|
王朝阳, 王 平. 提高凝汽器铜管硫酸亚铁一次性成膜质量 [J]. 热力发电, 2010, 39(6): 71
|
27 |
Bautista B E T, Carvalho M L, Seyeux A, et al. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater [J]. Bioelectrochemistry, 2014, 97: 34
doi: 10.1016/j.bioelechem.2013.10.004
pmid: 24177137
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|