|
|
Prediction for Corrosion Aging of Polyethylene in Marine Atmospheric Environment of Qingdao |
DING Kangkang, LIU Shaotong( ), GUO Weimin, MIAO Yichun, ZHANG Penghui, CHENG Wenhua, HOU Jian |
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
|
Cite this article:
DING Kangkang, LIU Shaotong, GUO Weimin, MIAO Yichun, ZHANG Penghui, CHENG Wenhua, HOU Jian. Prediction for Corrosion Aging of Polyethylene in Marine Atmospheric Environment of Qingdao. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1070-1074.
|
Abstract In order to solve the difficulty related to the prediction for the aging behavior of composites in natural environment with the complexity of environmental factors, polyethylene was chosen as composite matrix, and subjected to natural exposure test in the marine atmospheric environment of Qingdao area for 3, 6, 9, 12, 15, 18 and 24 months. Thereafter, based on the evolution of tensile and bending mechanical properties of the exposed polyethylene, by taking the consideration of the comprehensive influence of environmental factors into consideration, the natural weathering model with the radiation quantity as independent variable and the multi-factor superposition model with aging time as independent variable were established respectively. The results show that the tensile mechanical properties and bending mechanical properties of polyethylene both decreased with aging time and total solar irradiation in the marine atmospheric environment of Qingdao area. After exposure for 24 months, damages with micro-cracks occurred on the surface. The prediction error of natural weathering model for tensile and bending mechanical properties of polyethylene was less than 11.20%, while that of multi-factor superposition model was less than 3.07%. Therefore, the multi-factor superposition model had a better prediction precision.
|
Received: 08 November 2021
|
|
About author: LIU Shaotong, E-mail: liu_shaotong@126.com
|
[1] |
Zhang G T, Chen W G, Tang G Y. Application of lightweight compostie technology in manufacturing naval ship [J]. Fiber Compos., 2010, 27(1): 31
|
|
(张国腾, 陈蔚岗, 唐桂云. 复合材料轻量化技术在舰船制造领域的应用 [J]. 纤维复合材料, 2010, 27(1): 31)
|
[2] |
Huang X Y, Liu Y, Liu B. Application of composite materials in ships [J]. Jiangsu Ship, 2008, 25(2): 13
|
|
(黄晓艳, 刘源, 刘波. 复合材料在舰船上的应用 [J]. 江苏船舶, 2008, 25(2): 13)
|
[3] |
Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
|
|
(付海波, 刘晓茹, 孙媛 等. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 373)
|
[4] |
Li H, Zhang L P, Sun Y, et al. Prediction of service life of the glass fibre reinforced composite [J]. Eng. Plast. Appl., 2011, 39(1): 68
|
|
(李晖, 张录平, 孙岩 等. 玻璃纤维增强复合材料的寿命预测 [J]. 工程塑料应用, 2011, 39(1): 68)
|
[5] |
Wang P S, Li C F, Ni J X. Durability analysis and lifetime calculation of silane impregnated concrete structure [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 712
|
|
(王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算 [J]. 中国腐蚀与防护学报, 2021, 41: 712)
|
[6] |
Wen Y, Xiong L, Chen W, et al. Chloride penetration resistance of polyvinyl alcohol fiber concrete under dry and wet cycle in chloride salt solutions [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 381
|
|
(闻洋, 熊林, 陈伟 等. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 381)
|
[7] |
Lv S L, Yao L J, Tong X Y. Fatigue life prediction method of the composite adhesive bonding repair [J]. J. Mech. Strength, 2004, 26(suppl.1) : 130
|
|
(吕胜利, 姚磊江, 童小燕. 复合材料修补结构的疲劳寿命预测方法 [J]. 机械强度, 2004, 26(): 130)
|
[8] |
Zhou K, Hu B, Wang J M, et al. Application of Arrhenius equation in storage life evaluation of ammunition [J]. Equip. Environ. Eng., 2011, 8(4): 1
|
|
(周堃, 胡滨, 王津梅 等. 阿伦尼乌斯公式在弹箭贮存寿命评估中的应用 [J]. 装备环境工程, 2011, 8(4): 1)
|
[9] |
Shekhar H. Prediction and comparison of shelf life of solid rocket propellants using Arrhenius and Berthelot equations [J]. Propellants Explos. Pyrotech., 2011, 36: 356
doi: 10.1002/prep.200900104
|
[10] |
Zhou J K, Chen X D, Chen S X. Durability and service life prediction of GFRP bars embedded in concrete under acid environment [J]. Nucl. Eng. Des., 2011, 241: 4095
doi: 10.1016/j.nucengdes.2011.08.038
|
[11] |
Deroiné M, Le Duigou A, Le Duigou Y M, et al. Accelerated ageing and lifetime prediction of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water [J]. Polym. Test., 2014, 39: 70
doi: 10.1016/j.polymertesting.2014.07.018
|
[12] |
Gillen K T, Bernstein R, Derzon D K. Evidence of non-Arrhenius behaviour from laboratory aging and 24-year field aging of polychloroprene rubber materials [J]. Polym. Degrad. Stabil., 2005, 87: 57
doi: 10.1016/j.polymdegradstab.2004.06.010
|
[13] |
Fang Z G. Lifetime prediction method of polypropylene [J]. Synth. Mater. Aging Appl., 2018, 47(6): 54
|
|
(方志刚. 聚丙烯使用寿命预测方法 [J]. 合成材料老化与应用, 2018, 47(6): 54)
|
[14] |
Maksimov R D, Sokolov E A, Mochalov V P. Effect of temperature and moisture on the creep of polymeric materials 1. One-dimensional extension under stationary temperature-moisture conditions [J]. Polym. Mech., 1975, 11: 334
doi: 10.1007/BF00863977
|
[15] |
Clerc G, Brülisauer M, Affolter S, et al. Characterization of the ageing process of one-component polyurethane moisture curing wood adhesive [J]. Int. J. Adhes. Adhes., 2017, 72: 130
doi: 10.1016/j.ijadhadh.2016.09.008
|
[16] |
Muliana A. Nonlinear viscoelastic-degradation model for polymeric based materials [J]. Int. J. Solids Struct., 2014, 51: 122
doi: 10.1016/j.ijsolstr.2013.09.016
|
[17] |
Xiao Y H, Wang X, Lu L D, et al. Study on the hygrothermal ageing of glass fiber reinforced thermoplastic polyester composite [J]. Eng. Plast. Appl., 2001, 29(9): 35
|
|
(肖迎红, 汪信, 陆路德 等. 玻纤增强热塑性聚酯复合材料湿热老化研究 [J]. 工程塑料应用, 2001, 29(9): 35)
|
[18] |
Zuo X L, Zhang D H, Luo X, et al. Advances in the study of aging and anti-aging of long glass fiber reinforced composites [J]. China Plast. Ind., 2013, 41(1): 18
|
|
(左晓玲, 张道海, 罗兴 等. 长玻纤增强复合材料老化研究进展及防老化研究 [J]. 塑料工业, 2013, 41(1): 18)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|