Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1075-1080    DOI: 10.11902/1005.4537.2021.328
Current Issue | Archive | Adv Search |
Corrosion Behavior of 10CrNi3MoV Steel in Deep-sea Environment of Western Pacific
ZHANG Penghui1(), LI Xianchao1, TONG Hongtao1, ZHANG Yu1, CHEN Cheng2
1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
2. Unit 92118, People's Liberation Army, Zhoushan 316000, China
Cite this article: 

ZHANG Penghui, LI Xianchao, TONG Hongtao, ZHANG Yu, CHEN Cheng. Corrosion Behavior of 10CrNi3MoV Steel in Deep-sea Environment of Western Pacific. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1075-1080.

Download:  HTML  PDF(5543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 10CrNi3MoV steel was investigated, by means of morphologies observation, mass-loss calculation, pitting depth measurement and products composition analysis, after field exposure tests in different depths in western Pacific deep-sea environment. The main corrosion morphology of 10CrNi3MoV steel was pitting, and the growths of pitting density and pitting depth were observed as the test depth increased. The corrosion rate firstly decreased, and then slightly increased, in accordance with the variation of the dissolved oxygen concentration with depths. Due to the addition of alloying elements, the corrosion resistance of 10CrNi3MoV steel was inferior to that of ordinary carbon steel. γ-FeOOH was the main component in corrosion products, however, of which the amount of crystalline ones reduced with the increasing test depth.

Key words:  10CrNi3MoV steel      western pacific      seawater corrosion      deep-sea     
Received:  19 November 2021     
ZTFLH:  TG172.5  
About author:  ZHANG Penghui, E-mail: zhangph10@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.328     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1075

Fig.1  Macro corrosion morphologies of 10CrNi3MoV steel immersed for 1 a under 500 m (a, e), 800 m (b, f), 1200 m (c, g), 2000 m (d, h) in western pacific ocean before (a-d) and after (e-h) removal of surface rust layers
Fig.2  Micro corrosion morphologies of 10CrNi3MoV steel immersed for 1 a depths under 500 m (a), 800 m (b), 1200 m (c), 2000 m (d) of western pacific ocean
Fig.3  Corrosion rates of 10CrNi3MoV steel in different depths of western pacific ocean
Fig.4  Viariations of corrosion rates (a), dissolved oxygen (b), average (c) and maximum (d) pitting depths of 10CrNi3MoV and Q235 steels with seawater depth
Fig.5  XRD patterns of corrosion products formed on 10CrNi3MoV and Q235 steels after exposure at differnt seawater depths
Fig.6  Infrared spectra of corrosion products formed on 10CrNi3MoV steel after exposure at differnt seawater depths
[1] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
(周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[2] Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 107
(丁康康, 范林, 郭为民 等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 107)
[3] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
(郭为民, 孙明先, 邱日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313)
[4] Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
(孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508)
[5] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
(周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[6] Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
(林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
[7] Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
doi: 10.1016/j.oceaneng.2019.106405
[8] Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
[9] Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng. Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
[10] Peng W S, Duan T G, Hou J, et al. Long-term corrosion behaviour of 1060 aluminium in deep-sea environment of South China Sea [J]. Corros. Eng. Sci. Technol., 2021, 56: 327
doi: 10.1080/1478422X.2020.1861732
[11] Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
(彭文山, 侯健, 丁康康 等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145)
[12] Sun H J, Liu L, Li Y. Corrosion behavior of a high strength low alloy steel under hydrostatic pressure in deep ocean [J]. J. Electrochem., 2013, 19: 418
(孙海静, 刘莉, 李瑛. 深海静水压力环境下低合金高强度钢腐蚀行为研究 [J]. 电化学, 2013, 19: 418)
[13] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
(侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82)
[14] Dong F, Hu Y L, Zhao X, et al. Effect of hydrostatic pressure on corrosion behavior of 10CrNi3MoV steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 183
(董赋, 胡裕龙, 赵欣 等. 静水压力对10CrNi3MoV钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 183)
[15] Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
doi: 10.3724/SP.J.1037.2013.00143
(孙飞龙, 李晓刚, 卢琳 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219)
doi: 10.3724/SP.J.1037.2013.00143
[16] Cheng B Z, Qu S P, Dong L H, et al. Influence of hydrostatic pressure on the corrosion electrochemistry behaviors of 2205 steel in deep sea environment [J]. Corros. Prot., 2018, 39: 815
(程柏璋, 屈少鹏, 董丽华 等. 深海环境中静水压对2205钢腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2018, 39: 815)
[17] Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
doi: 10.1016/j.electacta.2009.02.010
[18] Wang X Y, Cao G L. Comparative studies on resistance against pitting corrosion of several seawater resistance steels [J]. Total Corros. Control, 2014, 28(2): 63
(王小燕, 曹国良. 几种典型耐海水钢耐点蚀性能的比较 [J]. 全面腐蚀控制, 2014, 28(2): 63)
[19] Yang Y G, Cui Z Y, Chen J, et al. Influence of hydrostatic pressure on the pitting behavior of Fe-20Cr alloy [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 415
(杨延格, 崔中雨, 陈杰 等. 静水压力对Fe-20Cr合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 415)
[20] Cao G L, Li G M, Chen S, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels [J]. Acta Metall. Sin., 2010, 46: 748
doi: 10.3724/SP.J.1037.2010.00748
(曹国良, 李国明, 陈珊 等. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较 [J]. 金属学报, 2010, 46: 748)
doi: 10.3724/SP.J.1037.2009.00816
[21] Guo W M, Ding K K, Cheng W H, et al. Corrosion behaviors of two kinds of low alloy steels in deep-sea environments [J]. Equip. Environ. Eng., 2019, 16(4): 26
(郭为民, 丁康康, 程文华 等. 两种低合金钢在深海环境下腐蚀行为规律研究 [J]. 装备环境工程, 2019, 16(4): 26)
[22] Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
(彭欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013)
[23] Xiong H X, Zhou L X. Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(Ⅵ) from aqueous solutions [J]. Acta Petrol. Mineral., 2008, 27: 559
(熊慧欣, 周立祥. 不同晶型羟基氧化铁 (FeOOH) 的形成及其在吸附去除Cr(Ⅵ) 上的作用 [J]. 岩石矿物学杂志, 2008, 27: 559)
[1] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[2] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[3] DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[4] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[5] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[7] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[8] Jianchun ZHANG,Longfei ZUO,Jinyang JIANG,Han MA,Dan SONG. Microstructure and Properties of Seawater Corrosion Resistant Rebar Steel 00Cr10MoV[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[9] CAO Pan, ZHOU Tingting, BAI Xiuqin, YUAN Chengqing. Research Progress on Corrosion and Protection in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.
[10] ZHAO Yi, WANG Fu. EFFECT OF HEAT TREATMENT PROCESSES ON SEAWATER CORROSION RESISTANCE PROPERTY OF 17-4PH STEEL[J]. 中国腐蚀与防护学报, 2011, 31(6): 473-477.
[11] ;. Electrochemical Corrosion Behaviour of Fe3Al/ZrO2 Composites[J]. 中国腐蚀与防护学报, 2007, 27(5): 263-268 .
[12] . The Electrochemical Impedance Spectroscopy of Dacromet coating in seawater[J]. 中国腐蚀与防护学报, 2007, 27(4): 197-201 .
[13] Dayang Liu. RESEARCH PROGRESS ON THE LONG PERIOD CORROSION LAW OF METALLIC MATERIALS IN SEAWATER[J]. 中国腐蚀与防护学报, 2005, 25(3): 142-148 .
[14] Dawei Cui; Leyun Lin; Yuehong Zhao. Prediction of Corrosion Behavior of Nonferrous Metals in Seawater with ANN[J]. 中国腐蚀与防护学报, 2004, 24(1): 29-32 .
[15] Guiqiao Huang. CORROSION OF STAINLESS STEELS IN TIDAL ZONE-EXPOSURE TEST FOR 16 YEARS〖ST〗〖HT〗〖WT〗〖KH1D〗[J]. 中国腐蚀与防护学报, 2002, 22(6): 330-334 .
No Suggested Reading articles found!