Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 433-440    DOI: 10.11902/1005.4537.2015.205
Orginal Article Current Issue | Archive | Adv Search |
Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area
Dongliang LI,Guiqin FU,Miaoyong ZHU()
School of Metallurgy, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(9289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Si on the corrosion behavior of two model bridge steels by alternative wetting and drying test in an artificial medium of 0.1 mol/L NaCl+0.01 mol/L NaHSO3, which aims to simulate the atmosphere corrosion of marine and industrial area, was investigated by mass loss method, polarization curve measurement, X-ray diffraction and scanning electron microscope with energy spectrum. The results indicate that the corrosion process of the two steels follows fairly well a power function of W=At n. When the Si content increases from 0.25% (mass fraction) to 0.48%, the weathering resistance of the two steels enhanced. However, with the increase of the thickness of the protective rust layer, the positive effect of Si weakened gradually. Si plays a significant role in strengthening ferrite microstructure, refining the grain size of corrosion products and promoting the crystallization of iron oxide, which enable the protectiveness of the rust layer to be increased in a short time. Besides, Si enriched in the edge of cracks and holes of the rust layer, that may be beneficial to the mending of defects. In the rust layer, Si exists mainly in the phase Fe2SiO4, which has an inverse spinel structure, and thus can enhance the stability of the rust layer.

Key words:  bridge steel      atmospheric corrosion      industrial-marine atmosphere      hot and humid environment      rust layer     

Cite this article: 

Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 433-440.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.205     OR     https://www.jcscp.org/EN/Y2016/V36/I5/433

Steel C Si Mn P S Nb Ti Ni Cu Fe
1# 0.035 0.25 0.75 0.018 0.001 0.060 0.01 0.20 0.32 Bal.
2# 0.037 0.48 0.69 0.016 0.001 0.064 0.01 0.21 0.32 Bal.
Table 1  Chemical compositions of experimental steels(mass fraction / %)
Fig.1  Metallographic microstructure of 1# (a) and 2# (b) experimental steels
Fig.2  Corrosion depth and corrosion rate vs corrosion time for two experimental steels
Steel d / μm v / mma-1
1# d=1.72844t 0.71829,R2=0.99894 v=13.05361t -0.25275,R2=0.98785
2# d=1.27265t 0.76508,R2=0.99994 v=11.35520t -0.23852,R2=0.99941
Table 2  Fitting results of corrosion kinetic curves of experimental steels
Fig.3  SEM images of rust layers of 1# (a, c) and 2# (b, d) steels after corrosion for 144 h (a, b) and 336 h (c, d)
Fig.4  Cross sections (a, b, e, f) and elemental analysis (c, d, g, h) of rust layers of 1# (a, c, e, g) and 2# (b, d, f, h) steels after corrosion for 144 h (a~d) and 336 h (e~h)
Fig.5  XRD spectra of rust layers of 1# (a) and 2# (b)steels after corrosion for 144 and 336 h
Fig.6  XPS analysis of chemical state of Si element in the rust layer of 2# steel after 336 h corrosion
Fig.7  Tafel curves of 1# (a) and 2# (b) steels after corrosion for different time
[1] Liang C F, Hou W T.The effect of alloying in carbon steels and low alloy steels on their atmospheric corrosion resistance[J]. J. Chin. Soc. Corros. Prot., 1997, 17(2): 87
[1] (梁彩凤, 侯文泰. 合金元素对碳钢和低合金钢在大气中耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 1997, 17(2): 87)
[2] Oh S J, Cook D C, Townsend H E.Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corros. Sci., 1999, 41(9): 1687
[3] Mejía Gómez J A, Antonissen J, Palacio C A, et al. Effects of Si as alloying element on corrosion resistance of weathering steel[J]. Corros. Sci., 2012, 59: 198
[4] Kim K Y, Hwang Y H, Yoo J Y.Effect of silicon content on the corrosion properties of calcium-modified weathering steel in a chloride environment[J]. Corrosion, 2002, 58(7): 570
[5] Townsend H E.Effect of alloying elements on the corrosion of steel in industrial atmospheres[J]. Corrosion, 2001, 57(6): 497
[6] Hudson J C, Stanners J F.The corrosion resistance of low-alloy steels[J]. J. Iron Steel Res. Int., 1955, 180: 271
[7] Larabee C P, Coburn S K.The atmospheric corrosion of steels influenced by changes in chemical composition [A]. Proceedings of the First International Congress on Metallic Corrosion[C]. London, 1961: 276
[8] Zhang Q S, Wang X D, Yu Y S, et al.The effect of Si on corrosion resistance of carbon steel in industrial atmosphere[J]. Mater. Prot., 2007, 40(8): 21
[8] (张起生, 王向东, 于永泗等. Si对碳钢耐大气腐蚀性能的影响[J]. 材料保护, 2007, 40(8): 21)
[9] Nishimura T.Corrosion performance of Si- and Al- bearing ultrafine grained weathering steel [A]. Proceedings of the Second International Conference on Advanced Structural Steels[C]. Shanghai, 2004: 124
[10] Nishimura T.Rust formation and corrosion performance of Si- and Al- bearing ultrafine grained weathering steel[J]. Corros. Sci., 2008, 50(5): 1306
[11] Nishimura T.Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel[J]. Sci. Technol. Adv. Mater., 2008, 9: 1
[12] Nishimura T.Electrochemical behavior and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure[J]. Corros. Sci., 2010, 52(11): 3609
[13] Chen X H, Dong J H, Han E-H, et al.The Synergistic Effect of Aluminium and Silicon on corrosion resistance of chlorine ion for low alloy steel [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels[C]. Gyeongju, 2006: 635
[14] Dong J H, Han E-H, Ke W, et al. One kind of Al-Si economy weathering steel [P]. China Pat: CN101033520, 2007-09-12
[14] (董俊华, 韩恩厚, 柯伟等. 一种AlSi型经济耐候钢 [P]. 中国专利: CN101033520, 2007-09-12)
[15] Chen X H.Synergistic effect of alloying elements on the resistance to atmospheric corrosion of cost effective weathering steel [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007
[15] (陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用 [D]. 沈阳: 中国科学院金属研究所, 2007)
[16] Xu H M, Zhang Y, Wang Y B, et al.Development of a low-cost Al-Si bearing weathering steel[J]. Iron Steel, 2013, 48(8): 70
[16] (许红梅, 张宇, 王银柏等. 一种低成本硅铝耐候钢的研制[J]. 钢铁, 2013, 48(8): 70)
[17] Zou D H, Guo A M.State and development using steel in railway bridge of China[J]. Steel Constr., 2009, 24(9): 1
[17] (邹德辉, 郭爱民. 我国铁路桥梁用钢的现状与发展[J]. 钢结构, 2009, 24(9): 1)
[18] Cui Z Q, Qin Y C.Metallography & Heat Treatment [M]. Beijing: China Machine Press, 2009: 228
[18] (崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2009: 228)
[19] Burger E, Fénart M, Perrin S, et al.Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion[J]. Corros. Sci., 2011, 53(6): 2122
[20] Lin C, Zhao Q, Liu Y E, et al.Evolution of corrosion products of 20 carbon steel in atmosphere containing SO2[J]. Acta Metall. Sin., 2010, 46(3): 358
[20] (林翠, 赵晴, 刘月娥等. 含SO2大气中20碳钢腐蚀产物的演变[J]. 金属学报, 2010, 46(3): 358)
[21] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[22] Dong J, Dong J H, Han E-H, et al.Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions[J]. Corros. Sci. Prot. Technol., 2006, 18(6): 414
[22] (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为[J]. 腐蚀科学与防护技术, 2006, 18(6): 414)
[23] Nishimura T.Corrosion behavior of silicon-bearing steel in a wet/dry environment containing chloride ions[J]. Mater. Trans., 2007, 48(6): 1438
[24] Yu F Z.The Corrosion Resistance of Metallic Materials [M]. Beijing: Science Press, 1982
[24] (于福洲. 金属材料的耐腐蚀性 [M]. 北京: 科学出版社, 1982)
[1] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[6] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[7] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[8] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[9] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[10] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[11] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[12] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[13] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[15] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
No Suggested Reading articles found!