Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 605-612    DOI: 10.11902/1005.4537.2021.163
Current Issue | Archive | Adv Search |
Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath
LIU Yongqiang1, LIU Guangming1(), FAN Wenxue2, TANG Rongmao1, GAN Hongyu1, SHI Chao1
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.China Anhui Dingwang Environmental Protection Material Technology Co. Ltd., Xuancheng 242000, China
Download:  HTML  PDF(3035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of sodium benzoate (SB) concentration of acid Zn-Ni plating bath (AZNB) at room temperature on the dissolution behavior of Zn and corrosion inhibition effect on Zn anode was assessed by means of static corrosion mass loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve measurement. The results show that the addition of SB to AZNB has a good inhibitory effect on the dissolution of Zn. With the increase of SB concentration within the range of 30-120 mg/L, the corrosion inhibition efficiency for Zn gradually increases. Therefore, SB is an anode type corrosion inhibitor. When the SB concentration of AZNB is the same, the corrosion inhibition efficiency for Zn decreases with the increasing temperature. The adsorption isotherm curve revealed that SB satisfies the Langmuir isotherm adsorption model on the surface of the Zn anode. The increase in temperature reduces the adsorption equilibrium constant of the corrosion inhibitor molecules on the Zn surface, resulting in a decrease in its adsorption capacity. The changes of thermodynamic parameters when SB adsorbed on Zn surface at different temperature show that the entropy increase process of SB corrosion inhibitor molecules on the Zn surface is controlled spontaneously by a mixture of physical adsorption and chemical adsorption.

Key words:  acidic Zn-Ni bath      Zn anode      sodium benzoate      corrosion inhibition      adsorption     
Received:  13 July 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51961028)
Corresponding Authors:  LIU Guangming     E-mail:  gemliu@126.com
About author:  LIU Guangming, E-mail: gemliu@126.com

Cite this article: 

LIU Yongqiang, LIU Guangming, FAN Wenxue, TANG Rongmao, GAN Hongyu, SHI Chao. Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 605-612.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.163     OR     https://www.jcscp.org/EN/Y2022/V42/I4/605

Fig.1  Polarization curves of Zn in acidic Zn-Ni plating baths containing different concentrations of SB
Content mg·L-1EcorrVIcorrA·cm-2βaV·dec-1-βcV·dec-1ηi %
0-1.2213.80×10-58.616.96---
30-1.175.38×10-513.2410.6760.98
60-1.044.24×10-58.977.8069.31
90-0.963.28×10-58.687.8276.29
120-0.922.73×10-59.988.3480.24
Table 1  Fitting parameters of polarization curves of Zn in acidic Zn-Ni plating baths containing different concentrations of SB
Fig.2  Nyquist (a) and Bode (b) diagrams of Zn in acidic Zn-Ni plating baths containing different concentrat-ions of SB and equivalent circuit of EIS (c)
Content / mg·L-1Rs / Ω·cm2Q1 / 10-4S·s-n ·cm-2Qn-1Rct1 / 102 Ω·cm2Q2 / 10-4S·s-n ·cm-2Qn-2Rct2 / 102 Ω·cm2ηR / %
03.8420.680.801.597.140.794.28---
307.547.290.981.141.160.719.1542.95
605.184.720.752.351.050.8311.2556.84
905.155.020.742.971.050.8511.0958.25
1203.826.190.733.531.840.8711.8361.78
Table 2  Fitting parameters of EIS of Zn in acidic Zn-Ni plating baths containing different concentrations of SB
Fig.3  Mass loss (a) and corrosion inhibition rate (b) curves of Zn in acidic Zn-Ni plating bath under different conditions of temperature and SB concentration
Fig.4  Surface morphologies of Zn in acidic Zn-Ni plating baths without (a) and with (b) SB
Fig.5  Adsorption isotherms of SB on Zn surface: (a) fre-undlich adsorption model, (b) Langmuir adsorp-tion model
Fig.6  Adsorption isotherms of SB on Zn surface under different temperature conditions
TemperatureKff /KLKLLinear fit equationCorrelation coefficient R2
2931.61819.0750.084c/θ=1.618c+19.0750.995
3031.68021.5350.078c/θ=1.680c+21.5350.997
3131.82324.7130.073c/θ=1.823c+24.7130.992
3232.00529.7780.067c/θ=2.005c+29.7780.996
Table 3  Fitting results of adsorption isotherms at different temperatures
Fig.7  lnKL/T -1 curve for adsorption of SB on Zn surface
Temperature / KΔH0 / kJ·mol-1ΔG0 / kJ·mol-1ΔS0/ J/ mol·k
293-6.289-27.64472.883
303-6.289-28.37872.901
313-6.289-29.16773.091
323-6.289-29.85572.958
Table 4  Thermodynamic function parameters of SB on Zn surface under different temperature conditions
Fig.8  Model diagrams of the corrosion dissolution process of Zn and the adsorption of SB molecules as corrosion inhibitor
1 Chang Q H, Chen F, Chen Y F. Effect of Ni/Zn ratio in plating solution on Zn-Ni electroplating of acidic liquid [J]. Hot Work. Technol., 2009, 38(12): 99
苌清华, 陈峰, 陈艳芳. 镀液中镍锌含量比对酸性液电镀Zn-Ni合金的影响 [J]. 热加工工艺, 2009, 38(12): 99
2 Cao L, Zuo Z Z, Tian Z B, et al. Research status and prospect of Zn-Ni alloy electroplating [J]. Mater. Prot., 2010, 43(4): 33
曹浪, 左正忠, 田志斌 等. 电镀锌镍合金的研究现状与展望 [J]. 材料保护, 2010, 43(4): 33
3 Zhou X R, Wang F, Zhang K C. Effect of operating conditions on Ni content of Zn-Ni alloy deposit in acidic solution [J]. Electropl. Finish., 2007, (6): 10
周晓荣, 王飞, 张开诚. 酸性液电镀Zn-Ni合金的操作条件对镀层中Ni含量的影响 [J]. 电镀与涂饰, 2007, (6): 10
4 Rosliza R, Senin H B, Nik W B W. Electrochemical properties and corrosion inhibition of AA6061 in tropical seawater [J]. Colloids Surf., 2008, 312A: 185
5 Li L J, Yao Z M, Lei J L, et al. Corrosion inhibition of AZ31 magnesium alloy by sodium benzoate [J]. Mater. Prot., 2009, 42(11): 24
李凌杰, 姚志明, 雷惊雷 等. 苯甲酸钠对AZ31镁合金的缓蚀作用 [J]. 材料保护, 2009, 42(11): 24
6 Zhao Y, Liang P, Shi Y H, et al. Corrosion inhibition of sodium benzoate for AM60 magnesium alloys in 3.5%NaCl solution [J]. CIESC J., 2013, 64: 3714
赵阳, 梁平, 史艳华 等. 苯甲酸钠对AM60镁合金在氯化钠溶液中的缓蚀作用 [J]. 化工学报, 2013, 64: 3714
7 Dong R F, Wu B Z, Chen T. Corrosion behaviour of metal in antifreeze fluid containing sodium benzoate and benzotriazole [J]. J. Liaoning Univ. Sci. Technol., 2012, 35: 230
董荣芬, 吴宝珠, 陈涛. 防冻液中苯并三氮唑与苯甲酸钠对多种金属的缓蚀作用 [J]. 辽宁科技大学学报, 2012, 35: 230
8 Medhashree H, Shetty A N. Synergistic inhibition effect of trisodium phosphate and sodium benzoate with sodium dodecyl benzene sulphonate on the corrosion of Mg-Al-Zn-Mn alloy in 30% ethylene glycol containing chloride ions [J]. J. Adhes. Sci. Technol., 2019, 33: 523
doi: 10.1080/01694243.2018.1543529
9 Mohammed B A, Mohana K N. The effect of sodium benzoate and sodium 4-(phenylamino) benzenesulfonate on the corrosion behavior of low carbon steel [J]. Monatsh. Chem., 2009, 140: 1
doi: 10.1007/s00706-008-0018-1
10 Wang Y T, Wang K X, Gao P X, et al. Inhibition for Zn corrosion by starch grafted copolymer [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 131
王亚婷, 王棵旭, 高鹏翔 等. 淀粉接枝共聚物对Zn的缓蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 131
11 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
12 Wang L, Gu W, Fu W, et al. The corrosion inhibition effect of sodium dodecylbenzene sulfonate on AZ31B magnesium alloy [J]. Appl. Chem. Ind., 2020, 49: 97
王丽, 顾威, 付文 等. 十二烷基苯磺酸钠对AZ31B镁合金的缓释效果研究 [J]. 应用化工, 2020, 49: 97
13 Wang L Z, Li X H. Adsorption and inhibition behavior of imidazoline on steel surface in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 353
王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 353
14 Talebian M, Raeissi K, Atapour M, et al. Inhibitive effect of sodium (E)-4-(4-nitrobenzylideneamino) benzoate on the corrosion of some metals in sodium chloride solution [J]. Appl. Surf. Sci., 2018, 447: 852
doi: 10.1016/j.apsusc.2018.04.073
15 Parveen M, Mobin M, Zehra S, et al. L-proline mixed with sodium benzoate as sustainable inhibitor for mild steel corrosion in 1M HCl: an experimental and theoretical approach [J]. Sci. Rep., 2018, 8: 7489
doi: 10.1038/s41598-018-24143-2
16 Liu M J, Wang J, Li C Y, et al. Study on adsorption thermodynamics and corrosion inhibition of sodium dodecylbenzene sulfonate on zinc in nitric acid [J]. Appl. Chem. Ind., 2007, 36: 355
刘明婧, 王佳, 李春颖 等. 硝酸溶液中十二烷基苯磺酸钠对锌的缓蚀作用及吸附热力学研究 [J]. 应用化工, 2007, 36: 355
17 Musa A Y, Kadhum A A H, Mohamad A B, et al. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol [J]. Corros. Sci., 2010, 52: 526
doi: 10.1016/j.corsci.2009.10.009
18 Qiang Y J, Zhang S T, Guo L, et al. Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26%NH4Cl solution [J]. J. Clean. Prod., 2017, 152: 17
doi: 10.1016/j.jclepro.2017.03.104
19 De Assunção Araújo Pereira S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
doi: 10.1016/j.corsci.2012.08.038
20 Singh M M, Gupta A. Corrosion behavior of mild steel in acetic acid solutions [J]. Corrosion, 2000, 56: 371
doi: 10.5006/1.3280540
21 Tran T, Brown B, Nesic S, et al. Investigation of the mechanism for acetic acid corrosion of mild steel [A]. Paper Presented at the Corrosion 2013 [C]. Orlando, Florida, 2013
22 Liu S, Zhong Y, Jiang R Y, et al. Synergistic inhibition of zinc corrosion by benzotriazole in combination with sodium phosphate [J]. J. South China Univ. Technol. (Nat. Sci. Ed)., 2011, 39(1): 36
柳松, 钟燕, 蒋荣英 等. 苯并三氮唑和磷酸钠对锌的协同缓蚀 [J]. 华南理工大学学报 (自然科学版), 2011, 39(1): 36
23 Hu R, Su Y Y, Liu H D, et al. The effect of adding corrosion inhibitors into an electroless nickel plating bath for magnesium alloys [J]. J. Mater. Eng. Perform., 2016, 25: 4530
doi: 10.1007/s11665-016-2265-3
[1] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[2] LI Jianyong, DAI Dianyu, QIAN Chen, DIAO Shulei, LIU Jinshan, LU Tongxin, SUN Yong, XIAO Fengjuan. Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[3] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[4] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[5] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[6] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[7] WANG Lizi, LI Xianghong. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[8] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[9] SUN Dan, LI Wei, WEI Runzhi, WANG Sheng, HAN Jiaxing, LIU Zheng. Theoretical Evaluation of 2-aminofluorenic Double Schiff Base Corrosion Inhibitor Based on Quantum Chemistry[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[10] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[12] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[15] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
No Suggested Reading articles found!