Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 590-596    DOI: 10.11902/1005.4537.2021.205
Current Issue | Archive | Adv Search |
Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer
GE Chengyue1,2, LUO Xiangping3(), WANG Jing1, DUAN Jizhou1, WANG Ning1, HOU Baorong1
1.Key Laboratory of Marine Environmental Corrosion and Bio-Fouling of Chinese Academy of Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
3.Beijing Gas Group Company Limited, Beijing 100035, China
Download:  HTML  PDF(2736KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Epoxy resin (E-20) was co-modified by silane coupling agent (KH550) and hydroxyl silicone oil through a two-step reaction process. The ethoxy group (coming from KH550) was introduced into E-20 by addition reaction of primary amine to increase the activity, thereby the grafting efficiency of E-20 with hydroxyl silicone oil was improved. The mechanism of two-step reaction process and the effect of reactant ratio on properties of modified resin were studied in detail through IR, GPC test, stability analysis and DSC test so that to optimize modification parameters. The results show that the appropriate ratio of reactants was E-20: hydroxyl silicone oil: KH550=10:1.5:0.5 (mass ratio). Further, the Mg-rich primer made of the modified resin was prepared and then applied on Al-alloy, afterwards the protective performance for the Mg-rich primer coated Al-alloy was assessed through salt spray testing and aging testing. The results show that this coating has high adhesion and good flexibility, as well as excellent salt spray resistance and aging resistance.

Key words:  Mg-rich coating      graft polymerization      modification of epoxy resin      protection of Al-alloy     
Received:  17 August 2021     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2019YFC0312103);Innovation and Development Fund of South China Sea Institute of Ecological Environment Engineering Innovation, CAS(ISEE2018YB05);National Natural Science Foundation of China(42006046)
Corresponding Authors:  LUO Xiangping     E-mail:  luoxiangping@bigas.com
About author:  LUO Xiangping, E-mail: luoxiangping@bigas.com

Cite this article: 

GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 590-596.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.205     OR     https://www.jcscp.org/EN/Y2022/V42/I4/590

Fig.1  Technical scheme of modification for E-20
Fig.2  FT-IR spectrum of intermediate product & reactant (a) and final product (b)
Fig.3  GPC curve of intermediate product (a) and the final product (b)
Fig.4  FT-IR spectrum of different modified products
Fig.5  GPC curves and fitting values of different modified products
Table 1  Storage stability of different modified resins
Fig.6  DSC curves and fitting values of different modified resin
Fig.7  Macroscopic morphotogies of original (a) salt-spraying (b) and ageing test (c) of coating prepared by different modified resins (a1-c1) 10:2:0.5, (a2-c2) 10:1.5:0.5, (a3-c3) 10:1:0.5
1 Xu H, Battocchi D, Tallman D E, et al. Use of Magnesium alloys as pigments in Magnesium-rich primers for protecting aluminum alloys [J]. Corrosion, 2009, 65: 318
doi: 10.5006/1.3319136
2 Allahar K N, Battocchi D, Orazem M E, et al. Modeling of electrochemical impedance data of a magnesium-rich primer [J]. J. Electrochem. Soc., 2008, 155: E143
doi: 10.1149/1.2965519
3 Simões A M, Battocchi D, Tallman D, et al. Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study [J]. Prog. Org. Coat., 2008, 63: 260
doi: 10.1016/j.porgcoat.2008.02.007
4 Bierwagen G P, Battocchi D, Simoes A, et al. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys [J]. Prog. Org. Coat., 2007, 59: 172
doi: 10.1016/j.porgcoat.2007.01.022
5 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
6 Li Y, Zheng S R, Wang Q L, et al. Latest research progress of toughening and modifying epoxy resin [J]. China Adhes., 2013, 22(7): 47
李英, 郑水蓉, 汪前莉 等. 增韧改性环氧树脂的最新研究进展 [J]. 中国胶粘剂, 2013, 22(7): 47
7 Li Y W, Shen M M, Ma Y J, et al. Synthesis of polyphenylmethoxy silicone modified epoxy resins [J]. Polym. Mater. Sci. Eng., 2010, 26(1): 22
李因文, 沈敏敏, 马一静 等. 聚苯基甲氧基硅烷及其改性环氧树脂的合成与性能 [J]. 高分子材料科学与工程, 2010, 26(1): 22
8 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
师超, 邵亚薇, 熊义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
9 Chen J, Kinloch A J, Sprenger S, et al. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles [J]. Polymer, 2013, 54: 4276
doi: 10.1016/j.polymer.2013.06.009
10 Huang W, Yao Y, Huang Y, et al. Surface modification of epoxy resin by polyether-polydimethylsiloxanes-polyether triblock copolymers [J]. Polymer, 2001, 42: 1763
doi: 10.1016/S0032-3861(00)00393-1
11 Xu T T, Chen Z Q, Tian W P, et al. Protective performance of a novel silicone coating ES150 modified with nano-particulate of metal for AZ91D Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 373
徐涛涛, 陈祝桥, 田卫平 等. ES150型纳米改性有机硅涂料的防护作用及其应用 [J]. 中国腐蚀与防护学报, 2018, 38: 373
12 Ge C Y, Zhao X, Guo Y D, et al. Study on preparation of magnesium-rich composite coating and performance enhancement by graft modification of epoxy resin [J]. Sci. Eng. Compos. Mater., 2019, 26: 308
doi: 10.1515/secm-2019-0009
13 Li G L. Epoxy Resin & Epoxy Coating[M]. Beijing: Chemical Industry Press, 2003: 30
李桂林. 环氧树脂与环氧涂料 [M]. 北京: 化学工业出版社, 2003: 30
14 Li L H, Zhang S F, Yang J Z, et al. Charge control and IR analysis of amine on diarylide yellow pigment PY14 [J]. Spectrosc. Spectr. Anal., 2005, 25: 1584
李路海, 张淑芬, 杨锦宗 等. 胺对联苯胺黄颜料的电荷控制作用及其红外光谱分析 [J]. 光谱学与光谱分析, 2005, 25: 1584
15 Ge C Y, Fu W F, Ling J X, et al. Study on preparation and property of magnesium-rich primer used for protection of aluminum alloy [J]. Paint Coat. Ind., 2013, 43(4): 23
戈成岳, 付文峰, 凌建雄 等. 铝合金保护用富镁底漆的研制及其性能研究 [J]. 涂料工业, 2013, 43(4): 23
[1] LIU Yongqiang, LIU Guangming, FAN Wenxue, TANG Rongmao, GAN Hongyu, SHI Chao. Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[2] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[3] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[4] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[5] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[6] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[7] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[9] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[10] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[11] CHENG Peng, LIU Jing, HUANG Feng, HUANG Xianqiu, PANG Tao. Corrosion Behavior of 690 MPa Weathering Bridge Steel in Simulated Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572.
[12] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[13] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[14] . Corrosion behavior of B10 copper-nickel alloy pipe in static and dynamic seawater[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[15] . A Review of Regional Atmospheric Corrosion Map[J]. 中国腐蚀与防护学报, 0, (): 0-0.
No Suggested Reading articles found!