Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 317-323    DOI: 10.11902/1005.4537.2021.103
Current Issue | Archive | Adv Search |
Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation
LIANG Taihe, ZHU Xuemei(), ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Download:  HTML  PDF(6494KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, composition and electrochemical corrosion properties of the oxidation-induced transition layer on austenitic steel Fe32Mn7Cr3Al2Si was investigated by means of XRD, EPMA, anode polarization and electrochemical impedance measurement, respectively. The Fe32Mn7Cr3Al2Si austenitic steel was intentionally oxidized at 700 and 800 ℃ in air, respectively, the formed oxide scale was typically composed of Mn2O3 outer sublayer, Mn2SiO4 middle sublayer, and Al2O3 inner sublayer. A transition layer of α-ferrite with Mn-depletion of 11% and Cr-enrichment of 14% at the interface of oxide scale/steel matrix was occurred at 800 ℃ in air for 160 h. Compared with the original Fe32Mn7Cr3Al2Si austenitic steel, the transition layer exhibited an increased passivation ability in 1 mol/L Na2SO4 solution, correspondingly, the free-corrosion potential increased from -463 mV (SCE) to 248 mV (SCE), the free corrosion current density decreased from the 2.8 μA/cm2 to 0.4 μA/cm2, and the resistant Rt increased from 15.5 kΩ·cm2 to 69.7 kΩ·cm2. It follows that Al- and Si-alloying can promote the Cr enrichment in the Mn depletion layer and therefore, improve the corrosion resistance of Fe32Mn7Cr3Al2Si austenitic steel.

Key words:  Fe32Mn7Cr3Al2Si steel      surface modification      oxidation-induced transformation      anodic polarization      electrochemical impedance spectroscopy     
Received:  08 May 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51575077)
Corresponding Authors:  ZHU Xuemei     E-mail:  xmzhu@djtu.edu.cn
About author:  ZHU Xuemei, E-mail: xmzhu@djtu.edu.cn

Cite this article: 

LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 317-323.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.103     OR     https://www.jcscp.org/EN/Y2022/V42/I2/317

Fig.1  EBSD image of Fe32Mn7Cr3Al2Si steel after solution treatment at 1273 K for 1 h
Fig.2  Cyclic oxidation kinetics of Fe32Mn7Cr3Al2Si steel at 700 and 800 ℃ in air
Fig.3  XRD patterns of Fe32Mn7Cr3Al2Si steel after cyclic oxidation at 700 and 800 ℃ in air
Fig.4  Surface morphologies of Fe32Mn7Cr3Al2Si steel after cyclic oxidation at 700 ℃ (a) and 800 ℃ (b)
Fig.5  Cross-sectional EPMA element mappings of Fe32Mn7Cr3Al2Si steel after cyclic oxidation at 700 ℃ in air for 160 h: (a) O, (b) Al, (c) Si, (d) Mn, (e) Fe, (f) Cr
Fig.6  Cross-sectional EPMA element mappings of Fe32Mn7Cr3Al2Si steel after cyclic oxidation at 800 ℃ in air for 160 h: (a) O, (b) Al, (c) Si, (d) Mn, (e) Fe, (f) Cr
Fig.7  Depth profiles of various elements in Fe32Mn7Cr3-Al2Si steel after cyclic oxidation at 800 ℃ for 160 h in air
Fig.8  Anodic polarization curves of Fe32Mn7Cr3Al2Si steel before and after oxidation modification
Fig.9  Electrochemical impedance spectra of Fe32Mn7Cr3Al2Si steel before (a) and after (b) oxidation modification
ProcessRt / kΩ·cm2Y0 / S·s-n·cm-2nRs / Ω·cm2
Mn depletion layer69.73.077×10-50.902.0
Fe32Mn3Al7Cr2Si15.55.556×10-50.891.5
Table 1  Fitting parameters of EIS of Fe32Mn7Cr3Al2Si steel before and after oxidation modification
1 Han J, Kang S H, Lee S J, et al. Superplasticity in a lean Fe-Mn-Al steel [J]. Nat. Commun., 2017, 8: 751
2 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
3 Chowdhury P, Canadinc D, Sehitoglu H. On deformation behavior of Fe-Mn based structural alloys [J]. Mater. Sci. Eng., 2017, 122R: 1
4 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content [J]. Mater. Sci. Eng., 2015, 639A: 187
5 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
6 Moon K M, Kim D A, Kim Y H, et al. Effect of Mn content on corrosion characteristics of lean Mn TWIP steel [J]. Int. J. Mod. Phys., 2018, 32B: 1840083
7 Hamada A S, Karjalainen L P. Nitric acid resistance of new type Fe-Mn-Al stainless steels [J]. Can. Metall. Quart., 2006, 45: 41
8 Zhang Y S, Zhu X M, Zhong S H. Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe-Mn base alloys in various aqueous solutions [J]. Corros. Sci., 2004, 46: 853
9 Zhang Y S, Zhu X M, Liu M, et al. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy [J]. Appl. Surf. Sci., 2004, 222: 89
10 Zhu X M, Liu M, Zhang Y S. Electrochemistry and surface investigations of anodically passivated layer formed on Fe-Mn-Al-Cr alloy in Na2SO4 solution [J]. Corros. Eng. Sci. Technol., 2007, 42: 22
11 Liu M, Zhu X M, Zhang Y S. Effect of initial transpassive treatment on properties of passive film formed on Fe-Mn-Al-Cr alloy [J]. Corros. Eng. Sci. Technol., 2013, 48: 36
12 Pérez P, Pérez F J, Gómez C, et al. Oxidation behaviour of an austenitic Fe-30Mn-5Al-0.5C alloy [J]. Corro. Sci., 2002, 44: 113
13 Pérez P, Garcés G, Pérez F J, et al. Influence of chromium additions on the oxidation resistance of an austenitic Fe-30Mn-5Al alloy [J]. Oxid. Met., 2002, 57: 339
14 Wang C J, Chang Y C. TEM study of the internal oxidation of an Fe-Mn-Al-C alloy after hot corrosion [J]. Oxid. Met., 2002, 57: 363
15 Zhu X M, Wang X J, Liu M, et al. Cyclic oxidation of Fe - 30Mn - 9Al austenitic steel in air at 700 ℃~950 ℃ [J]. Corros. Sci. Prot. Technol., 2005, 17(1): 31
朱雪梅, 王新建, 刘明等. Fe-30Mn-9Al 奥氏体钢高温循环氧化特征 [J]. 腐蚀科学与防护技术, 2005, 17(1): 31
16 Zhu X M, Zhang Z W, Wang X J, et al. Electrochemical corrosion behavior of oxidation layer on Fe30Mn5Al alloy [J]. J. Mater. Eng., 2017, 45(8): 83
朱雪梅, 张振卫, 王新建等. Fe30Mn5Al合金氧化改性层的电化学腐蚀性能 [J]. 材料工程, 2017, 45(8): 83
17 Su C W, Lee J W, Wang C S, et al. The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy [J]. Surf. Coat. Technol., 2008, 202: 1847
18 Jaw J H, Cheng W C, Wang C J. The formation of AIN crystals in an Fe-Mn-Al-C alloy during the nitriding process [J]. Metall. Mater. Trans., 2005, 36A: 2289
19 Zhu X M, Zhang Z W, Wang X J, et al. Corrosion resistance of oxidation-induced Mn depletion layer on austenitic Fe24Mn4Al5Cr alloy [J]. Rare Met. Mater. Eng., 2015, 44: 3197
朱雪梅, 张振卫, 王新建等. Fe24Mn4Al5Cr合金高温氧化诱发贫Mn层的耐蚀性 [J]. 稀有金属材料与工程, 2015, 44: 3197
20 Dunning J S, Alman D E, Rawers J C. Influence of silicon and aluminum additions on the oxidation resistance of a lean-chromium stainless steel [J]. Oxid. Met., 2002, 57: 409
21 Xie D B, Zhou Y Y, Lu J T, et al. Effect of Al/Si content on corrosion of Ni-based alloys in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 68
谢冬柏, 周游宇, 鲁金涛等. Al/Si对镍基合金在超临界水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 68
22 Oh J M, McNallan M J, King W E. Microstructural development in the surface region during oxidation of iron-manganese-nickel-silicon alloys [J]. J. Electrochem. Soc., 1986, 133: 1042
23 Li M S. The High Temperature Oxidationof Metal [M]. Beijing: Metallurgical Industry Press, 2001
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
[1] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[3] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[4] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[5] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[6] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
No Suggested Reading articles found!