Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 235-242    DOI: 10.11902/1005.4537.2021.084
Current Issue | Archive | Adv Search |
Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance
LIU Yongqiang1, LIU Guangming1(), FAN Wenxue2, GAN Hongyu1, TANG Rongmao1, SHI Chao1
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.China Anhui Dingwang Environmental Protection Material Technology Co. Ltd. , Xuancheng 242000, China
Download:  HTML  PDF(5729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of polyethylene glycol-600 (PEG-600) on the acidic Zn-Ni alloy plating process was studied by means of cyclic voltammetry (CV) curve measurement. The influence of the concentration of polyethylene glycol-600 (PEG-600) in the acidic Zn-Ni alloy plating electrolyte on the corrosion resistance and the surface morphology of the Zn-Ni alloy coatings was characterized via electrochemical impedance spectroscopy (EIS), Taffel polarization curve measurement and surface morphology analysis method. The results show that PEG-600, as a non-ionic surfactant, has a strong adsorption capacity on the surface of cathode. The addition of PEG-600 to the plating electrolyte will affect the electroplating process of the Zn-Ni alloy, making it more difficult for Zn2+ and Ni2+ to move to the surface of the cathode, as a result, the co-deposition peak position of Zn-Ni may move towards negative potential direction, so that the cathode overpotential rises. With the increase of the concentration of PEG-600 in the plating electrolyte, the corrosion resistance of the electroplated Zn-Ni alloy coating increases first and then decreases. When the concentration of PEG-600 is 3.33×10-2 mol/L, the corrosion resistance of the electroplated Zn-Ni alloy coating reaches the best, namely the coating with electrochemical impedance of 1960 Ω·cm2 and free-corrosion current of 1.97×10-5 A·cm-2, and the Zn-Ni alloy coating consists of uniformly intermetallic compound γ phase with better surface morphology in micro scale.

Key words:  polyethylene glycol-600      acidic Zn-Ni plating bath      electrodeposition      corrosion resistance     
Received:  19 April 2021     
ZTFLH:  TG174  
Fund: National Natural Science Fundation of China(51961028)
Corresponding Authors:  LIU Guangming     E-mail:  gemliu@126.com
About author:  LIU Guangming, E-mail: gemliu@126.com

Cite this article: 

LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 235-242.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.084     OR     https://www.jcscp.org/EN/Y2022/V42/I2/235

Fig.1  Schematic diagram of Zn-Ni alloy electrodeposition device
Fig.2  Measured cyclic voltammetry curves in different plating solutions: (a) PEG-600+ basic plating solution without Zn and Ni; (b) PEG-600+basic plating solution without Ni; (c) PEG-600+ basic plating solution without Zn; (d) Zn-Ni alloy bath+without PEG-600 and Zn-Ni alloy bath+with PEG-600
Fig.3  Infrared spectrum of Zn-Ni alloy coating
Fig.4  Surface morphology and energy spectrum (point 1~4 in Fig.4a~d) of Zn-Ni alloy coatings with different concentrations of PEG-600 added to the basic bath: (a) blank, (b) 1.67×10-2 mol/L, (c) 3.33×10-2 mol/L, (d) 4.16×10-2 mol/L
Fig.5  X-ray diffraction pattern of Zn-Ni alloy coating obtained by electrodeposition without adding PEG-600 and adding 3.33×10-2 mol/L PEG-600 in the basic plating solution
Fig.6  Polarization curves of Zn-Ni alloy coatings with different contents of PEG-600 added to the basic bath
Content / mol·L-1Ecorr / VIcorr / A·cm-2βc / V·dec-1βa / V·dec-1
Blank-0.942.40×10-421.63.04
1.67×10-2-0.856.16×10-519.12.62
3.33×10-2-0.711.97×10-522.73.32
4.16×10-2-0.783.73×10-516.03.13
Table 1  Polarization curve fitting parameters of PEG-600 electrodeposited Zn-Ni alloy coating with different contents in the basic bath
Fig.7  Nyquist (a) and Bode (b) diagrams of electrode-posited Zn-Ni alloy coatings with different contents of PEG-600 added to the basic bath
Fig.8  Equivalent circuit of electrochemical impedance spectroscopy of Zn-Ni alloy coating
Content / mol·L-1RS / Ω·cm2Q1 / 10-4S·s-n·cm-2Qn-1L / 103H·cm2Rct1 / 102Ω·cm2Q2 / 10-4 S·s-n·cm-2Qn-2Rct2 / 102Ω·cm2
Blank8.480.350.841.963.875.120.912.45
1.67×10-27.914.800.652.557.893.100.771.62
3.33×10-28.500.560.803.2112.777.960.826.83
4.16×10-28.202.570.742.579.564.270.905.11
Table 2  Fitting parameters of electrochemical impedance spectroscopy equivalent circuit of Zn-Ni alloy coating
1 Cao L, Zuo Z Z, Tian Z B, et al. Research status and prospect of Zn-Ni alloy electroplating [J]. Mater. Prot., 2010, 43(4): 33
曹浪, 左正忠, 田志斌等. 电镀锌镍合金的研究现状与展望 [J]. 材料保护, 2010, 43(4): 33
2 Zhou X R, Wang F, Zhang K C. Effect of operating conditions on Ni content of Zn-Ni alloy deposit in acidic solution [J]. Electroplat. Finish., 2007, 26(6): 10
周晓荣, 王飞, 张开诚. 酸性液电镀Zn-Ni合金的操作条件对镀层中Ni含量的影响 [J]. 电镀与涂饰, 2007, 26(6): 10
3 Chang Q H, Chen F, Chen Y F. Effect of Ni/Zn ratio in plating solution on Zn-Ni electroplating of acidic liquid [J]. Hot Work. Technol., 2009, 38(12): 99
苌清华, 陈峰, 陈艳芳. 镀液中镍锌含量比对酸性液电镀Zn-Ni合金的影响 [J]. 热加工工艺, 2009, 38(12): 99
4 Li H F, Zhou X R, Liu L M, et al. Study of bright zinc-nickel electroplating in weak acidic solutions [J]. Electroplat. Finish., 1999, 18(1): 8
李华锋, 周晓荣, 柳立名等. 弱酸性电镀光亮锌镍合金的研究 [J]. 电镀与涂饰, 1999, 18(1): 8
5 Wang S. The Electrodeposition of preparation and its corrosion resistance of zinc, nickel and zinc-nickel alloy layers on the surface of 45# steel substrate [D]. Guilin: Guangxi Normal University, 2016
王顺. 45号钢基材表面锌、镍和锌镍合金层的电沉积制备及其耐腐蚀性研究 [D]. 桂林: 广西师范大学, 2016
6 Shang H W. Study on the high strength steel about low hydrogen embrittlement process of Zn-Ni alloy eletroplating and additive [D]. Harbin: Harbin Institute of Technology, 2008
商红武. 高强钢低氢脆电镀锌镍合金工艺及添加剂的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008
7 Wu X Y. Technology of zinc-nickel alloy electroplating from cyanide-free alkaline solutions [D]. Guangzhou: South China University of Technology, 2010
吴雪颖. 碱性无氰电镀锌-镍合金工艺的研究 [D]. 广州: 华南理工大学, 2010
8 Qiao X P, Li H L, Zhao W Z, et al. Effects of deposition temperature on electrodeposition of zinc-nickel alloy coatings [J]. Electrochim. Acta, 2013, 89: 771
9 Pei H Z, Huang P, Shi Q N, et al. Research to the corrosion resistance of the alkaline zinc-nickel alloy plates [J]. Adv. Mater. Res., 2013, 616-618: 1756
10 An M Z, Feng Z B, Ren L L, et al. Research progress and application status of electrodeposited Zn-Ni alloy coatings [J]. Mater. Sci. Technol., 2017, 25(4): 1
安茂忠, 冯忠宝, 任丽丽等. 电镀Zn-Ni合金研究进展与应用现状 [J]. 材料科学与工艺, 2017, 25(4): 1
11 Basavanna S, Naik Y A. Electrochemical studies of Zn-Ni alloy coatings from acid chloride bath [J]. J. Appl. Electrochem., 2009, 39: 1975
12 Feng Z B, Wang L, Li D G, et al. Electrochemical studies of 2-aminopyridine on nanocrystalline Zn-Ni alloy electrodeposition [J]. J. Electroanalyt. Chem., 2019, 835: 114
13 Sinoimeri E, Fernandes V M, Cognard J, et al. Uncommon biphasic behaviour induced by very high metal ion concentrations in HCl/H2O/[P44414]Cl and HCl/H2O/PEG-600 systems [J]. Phys. Chem. Chem. Phys., 2020, 22: 23226
14 Chen H J, Wang R, Ding W X, et al. Effect of polymerization degree of polyethylene glycol on microtopography and adsorbability of mesoporous η-Al2O3 fibers [J]. Acta Mater. Compos. Sin., 2014, 31: 845
陈华军, 王锐, 丁梧秀等. 聚乙二醇聚合度对介孔η-Al2O3纤维形貌及吸附能力的影响 [J]. 复合材料学报, 2014, 31: 845
15 Yang H Y, Guo X W, Chen X B, et al. On the electrodeposition of nickel-zinc alloys from a eutectic-based ionic liquid [J]. Electrochim. Acta, 2012, 63: 131
16 Feng Z B, Li Q Y, Zhang J Q, et al. Electrochemical behaviors and properties of Zn-Ni alloys obtained from alkaline Non-cyanide bath using 5,5′-dimethylhydantoin as complexing agent [J]. J. Electrochem. Soc., 2015, 162: D412
17 Addi Y, Khouider A. Electrodeposition of Ni-Zn alloys on steel from acidic solution in presence of boric acid [J]. ECS Trans., 2013, 45: 79
18 Huang M L, Wu Y Z, Mo Y Q, et al. Effect of additives on zinc electrodeposition in potassium chloride bath [J]. Mater. Prot., 2010, 43(7): 1
黄美玲, 吴育忠, 莫烨强等. 添加剂对氯化钾溶液中锌电沉积的影响 [J]. 材料保护, 2010, 43(7): 1
19 Xu Y Y, Zhang Y, Zhang Y X, et al. MIR spectroscopy study of polyethylene glycol [J]. Qilu Petrochem. Technol., 2020, 48: 188
徐元媛, 张莹, 张雨萱等. 聚乙二醇中红外光谱研究 [J]. 齐鲁石油化工, 2020, 48: 188
20 Wang Y T, Wang K X, Gao P X, et al. Inhibition for Zn corrosion by starch grafted copolymer [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 131
王亚婷, 王棵旭, 高鹏翔等. 淀粉接枝共聚物对Zn的缓蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 131
21 Hao Y L, Yang W Z, Yin X S, et al. Effect of surfactants on the properties of electroless Ni-P-Al2O3 composite coatings [J]. Surf. Technol., 2016, 45(6): 15
郝亚莉, 杨文忠, 尹晓爽等. 表面活性剂对Ni-P-Al2O3复合镀层性能的影响 [J]. 表面技术, 2016, 45(6): 15
22 Xue Y Z, Liang J, Wang W, et al. Influence of polyethyleneglycol additive on pulse electrodeposition of zinc on magnesium alloy in reline tonic liquid as well as microstructure and corrosion resistance of zinc coating [J]. Mater. Prot., 2013, 46(9): 1
薛宇宙, 梁军, 王巍等. 添加剂聚乙二醇400对Reline离子液体电沉积Zn过程及镀层组织结构与耐蚀性的影响 [J]. 材料保护, 2013, 46(9): 1
23 Xu W. Preparation and corrosion resistance of Go and Vteo modified zinc-nickel coating on low carbon steel surface [D]. Harbin: Harbin Institute of Technology, 2019
徐文. 低碳钢表面GO和VTEO改性锌镍镀层的制备及耐蚀性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
[1] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[2] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[3] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[4] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[5] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[6] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[7] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[8] ZHANG Chenyang, LIU Huicong, HAN Dongxiao, ZHU Liqun, LI Weiping. Preparation of Micron SiC/Ni-Co-P Composite Coatings and Influencing Factors[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[9] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[10] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[11] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[12] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[13] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[14] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[15] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
No Suggested Reading articles found!