Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 211-217    DOI: 10.11902/1005.4537.2021.106
Current Issue | Archive | Adv Search |
Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria
LI Zhenxin, LV Meiying, DU Min()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(9692KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of stepwise cathodic polarizations with two potentials: either -850 mV (vs. SCE) then -1050 mV or -1050 mV then -850 mV on the corrosion behavior of X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria was studied by means of electrochemical techniques, scanning electron microscopy and confocal laser scanning microscopy and Raman spectroscopy. The results show that both of the two stepwise polarizations all can inhibit the IOB induced corrosion. There is little difference in the composition but variation in the content of each constituent of corrosion products formed on X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria by open circuit potential as well as by applying either of the two stepwise polarizations respectively. The polarization by -1050 mV can inhibit IOB adhesion, but cannot completely remove the formed biofilm, which may be the reason why the stepwise polarization by -1050 mV then -850 mV has better protection effect than that by -850 mV then -1050 mV.

Key words:  microbiologically influenced corrosion      iron-oxidizing bacteria      combined potential cathodic polarization      seawater environment      adhering     
Received:  12 May 2021     
ZTFLH:  Q939.98  
Fund: National Natural Science Foundation of China(51871204)
Corresponding Authors:  DU Min     E-mail:  ssdm99@ouc.edu.cn
About author:  DU Min, E-mail: ssdm99@ouc.edu.cn

Cite this article: 

LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 211-217.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.106     OR     https://www.jcscp.org/EN/Y2022/V42/I2/211

Fig.1  Growth curve of IOB in seawater enriron ment
Fig.2  Amount of IOB in the solution after 3 d at different cathodic potentials
Fig.3  Surface morphologies of X65 steel after immersion for 7 d under different combined potentials: (a) OCP, (b) -850 mV to -1050 mV polarization, (c) -1050 mV to -850 mV polarization
Fig.4  Surface morphologies of X65 steel after removing corrosion products formed during polarization for 7 d at diff-erent cathodic potentials: (a) OCP, (b) -850 to -1050 mV, (c) -1050 to -850 mV
ConditionNpit / 1/mm2davg / μmdmax / μmDavg / μm
OCP45.25-1.56-12.8524.92
-850 to -1050 mV27.50-1.47-8.8221.07
-1050 to -850 mV11.75-1.48-4.7720.47
Table 1  CLSM measurement data of the surface of X65 steel after removing corrosion products formed during polarization for 7 d at different cathodic potentials
Fig.5  Raman spectra of X65 steel after polarization for 7 d at different cathodic potentials: (a) OCP, (b) -850 to -1050 mV, (c) -1050 to -850 mV
Fig.6  EIS of X65 steel after polarization for different time under different cathodic polarization potentials: (a1~a3) OCP, (b1~b3) -850 to -1050 mV, (c1~c3) -1050 to -850 mV
Fig.7  Equivalent circuit diagram for fitting EIS
Fig.8  Time dependences of fitting parameters of EIS: (a) Rf, (b) Cf ,(c) n
Fig.9  Surface state diagrams of X65 steel under different cathodic polarization potentials: (a) OCP, (b) -850 mV to -1050 mV, (c) -1050 mV to -850 mV
1 Xu Z. Study on constitutive relation and failure criteria of X65 pipeline steel [J]. Petro. Eng. Constr., 2014, 40(3): 23
徐震. X65管线钢的本构关系及失效判据研究 [J]. 石油工程建设, 2014, 40(3): 23
2 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
3 McBeth J M, Little B J, Ray R I, et al. Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments [J]. Appl. Environ. Microbiol., 2011, 77: 1405
4 McBeth J M, Emerson D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of iron-oxidizing bacteria [J]. Front. Microbiol., 2016, 7: 767
5 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
6 Zhang H Y, Tian Y M, Wan J M, et al. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water [J]. Appl. Surf. Sci., 2015, 357: 236
7 Lv M Y, Du M, Li X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria [J]. J. Mater. Res. Technol., 2019, 8: 4066
8 Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH [J]. Appl. Environ. Microbiol., 1997, 63: 4784
9 Sung W, Morgan J J. Kinetics and product of ferrous iron oxygenation in aqueous systems [J]. Environ. Sci. Technol., 1980, 14: 561
10 Sobolev D, Roden E E. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium from freshwater wetland sediments [J]. Geomicrobiol. J., 2004, 21: 1
11 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2011, 47: 79
12 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
13 Moradi M, Duan J, Ashassi-Sorkhabi H, et al. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria [J]. Corros. Sci., 2011, 53: 4282
14 Miot J, Benzerara K, Morin G, et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria [J]. Geochim. Cosmochim. Acta, 2009, 73: 696
15 Yue Y Y, Lv M Y, Du M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment [J]. Mater. Corros., 2019, 70: 1852
16 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
17 Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
王坤泰, 陈馥, 李环等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248
18 Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343
19 Esquivel R G, Olivares G Z, Gayosso M J H, et al. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria [J]. Mater. Corros., 2011, 62: 61
20 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization [J]. PLoS One, 2016, 11: e0162315
21 Sun C, Xu J, Wang F H, et al. Effects of SRB on cathodic protection of Q235 steel in soils [J]. Mater. Corros., 2010, 61: 762
22 Permeh S, Lau K, Tansel B, et al. Surface conditions for microcosm development and proliferation of SRB on steel with cathodic corrosion protection [J]. Constr. Build. Mater., 2020, 243: 118209
23 Lv M Y, Yue Y Y, Li Z X, et al. Effect of cathodic polarization on corrosion behavior of X65 steel in seawater containing iron-oxidizing bacteria [J]. Int. J. Electrochem. Sci., 2021, 16: 1
24 Det Norske Veritas. DNV-RP-B401 [R]. Cathodic Protection Design, 2005
25 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
26 Refait P, Jeannin M, Sabot R, et al. Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater [J]. Corros. Sci., 2013, 71: 32
27 Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
28 Niu Y, Lin Z L, Lin G J, et al. Research on corrosion behavior of Q235 steel in marine iron-oxidizing bacteria [J]. Mar. Environ. Sci., 2014, 33: 739
牛艳, 林振龙, 林国基等. Q235钢在海洋铁细菌作用下的腐蚀行为研究 [J]. 海洋环境科学, 2014, 33: 739
29 Li X B, Wang J. Effect of cathodic polarization on microbial film in seawater environment [J]. Equip. Environ. Eng., 2004, 1(6): 27
李相波, 王佳. 阴极极化对金属电极表面微生物膜的影响 [J]. 装备环境工程, 2004, 1(6): 27
30 Dargahi M, Hosseinidoust Z, Tufenkji N, et al. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates [J]. Colloid. Surf., 2014, 117B: 152
[1] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[2] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[3] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[4] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[5] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[6] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[7] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[10] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[11] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[12] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[13] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[14] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[15] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
No Suggested Reading articles found!