Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 195-206    DOI: 10.11902/1005.4537.2016.039
Orginal Article Current Issue | Archive | Adv Search |
Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria
Hongwei LIU,Hongfang LIU()
Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(4499KB) 
Export:  BibTeX | EndNote (RIS)      

This paper systematically summarizes the formation and evolution of the iron oxidizing bacteria (IOB) related biofilm and the relevant mechanism, and then introduces the metabolic process of IOB and the corrosion process induced by IOB with emphasis on the role in the corrosion process of their metabolite of extracellular polymeric substance (EPS). The paper also reviews the research progress of synergic corrosion induced by typical aerobic IOB and anaerobic sulfate reducting bacteria (SRB). In addition, the paper further summarizes corrosion prevention methods applied in oilfields and the corresponding research progress, which may provide reference for the corrosion control for oilfield.

Key words:  iron oxidizing bacteria      microbiologically influenced corrosion      biofilm      extracellular polymeric substance      synergic corrosion     
Received:  24 March 2016     
Fund: Supported by National Natural Science Foundation of China (51171067) and Natural Science Foundation of Shenzhen City (JC201005310696A)

Cite this article: 

Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 195-206.

URL:     OR

Fig.1  Change of biofilm of IOB on the carbon steel surface with different incubation time: (a) 2 d, (b) 4 d, (c) 7 d, (d) 21 d
Fig.2  Schematic process of biofilm formation[5]
Fig.3  Corrosion morphologies of Q235 carbon steel after removing corrosion products after 21 d incubation in IOB culture medium: (a) control, (b) IOB
Fig.4  Corrosion process in the presence of an oxygenated biofilm, owing to Fe3+binding by EPS (a) and electrons are transferred directly from the Fe0 to Fe-EPS (b)[60]
Fig.5  Iron reaction pathways of pitting potentially caused by oxygen and Fe(OH)3 precipitation induced crevice corrosion (a) and carbon steel in bacterial inoculum (b)[68,69]
[1] Castaneda H, Benetton X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[2] Lin J.Initial corrosion behavior under biofilms of metal material in sea water [D]. Harbin: Harbin Engineering University, 2006
[2] (林晶. 海水中微生物膜下金属材料初期腐蚀行为 [D]. 哈尔滨: 哈尔滨工程大学, 2006)
[3] Liu H W, Gu T Y, Asif M, et al.The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
[4] Chen B, Qin S, Chen L, et al.Influence of static magnetic field on formation of SRB biofilm[J]. Corros. Sci. Prot. Technol., 2014, 26: 499
[4] (陈碧, 秦双, 陈蕾等. 静磁场对硫酸盐还原菌生物膜形成过程的影响[J]. 腐蚀科学与防护技术, 2014, 26: 499)
[5] Liu H W, Xu D K, Wu Y N, et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[5] (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 409)
[6] Liu H W, Xu D K, Dao A Q, et al.Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris[J]. Corros. Sci., 2015, 101: 84
[7] Zhang Q K, He Y H, Wang W, et al.Corrosion behavior of WC-CO hardmetals in the oil-in-water emulsions containing sulfate reducing Citrobacter sp.[J]. Corros. Sci., 2015, 94: 48
[8] Qu Q, He Y, Wang L, et al.Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2[J]. Corros. Sci., 2015, 91: 321
[9] Jin J T, Wu G X, Guan Y T.Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water[J]. Water Res., 2015, 71: 207
[10] Zhang P Y, Xu D K, Li Y C, et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101: 14
[11] Fan M M, Zhao Y, Yan H Y, et al.Influence of sulfate-reducing bacteria on the carbon dioxide corrosion behavior of X60 steel[J]. Equip. Environ. Eng., 2010, 7(5): 13
[11] (范梅梅, 赵勇, 闫化云等. 硫酸盐还原菌对X60钢CO2腐蚀行为的影响[J]. 装备环境工程, 2010, 7(5): 13)
[12] Liu H W, Fu C Y, Gu T Y, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
[13] Liu H, Gu T, Zhang G, et al.Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors[J]. Corros. Sci., 2016, 105: 149
[14] Chen Y J, Tang Q, Senko J M, et al.Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion[J]. Corros. Sci., 2015, 90: 89
[15] Li S M, Zhang Y Y, Liu J H, et al.Corrosion behavior of steel A3 influenced by thiobacillus ferrooxidans[J]. Acta Phys.-Chim. Sin., 2008, 24: 1553
[15] (李松梅, 张媛媛, 刘建华等. 氧化亚铁硫杆菌作用下A3钢的腐蚀行为[J]. 物理化学学报, 2008, 24: 1553)
[16] Liu H, Gu T, Asif M, et al.The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
[17] Li S M, Zhang Y Y, Bai R B, et al.Corrosion behavior of steel A3 under the combined effect of streptomyces and nocardia sp[J]. Acta Phys.-Chim. Sin., 2009, 25: 921
[17] (李松梅, 张媛媛, 白如冰等. A3钢在链霉菌和诺卡氏菌共同作用下的腐蚀行为[J]. 物理化学学报, 2009, 25: 921)
[18] Zeng L, Zhang G A, Guo X P, et al.Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow[J]. Corros. Sci., 2015, 90: 202
[19] Ramesh S, Rajeswari S.Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives[J]. Electrochim. Acta, 2004, 49: 811
[20] Liu W, Zhao Y L, Lu M X.Corrosion electrochemical characteristics of X60 pipeline steel in SRB and CO2 coexistence environment[J]. Acta Phys.-Chim. Sin., 2008, 24: 393
[20] (柳伟, 赵艳亮, 路民旭. SRB和CO2共存环境中X60管线钢腐蚀电化学特征[J]. 物理化学学报, 2008, 24: 393)
[21] Liu H W, Zhang F, Wu Y N, et al.Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB[J]. Corros. Prot., 2015, 36: 137(刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为 [J]. 腐蚀与防护, 2015, 36: 137)
[22] Ramesh S, Rajeswari S.Evaluation of inhibitors and biocide on the corrosion control of copper in neutral aqueous environment[J]. Corros. Sci., 2005, 47: 151
[23] Su W N, Tian Y M, Peng S.The influence of sodium hypochlorite biocide on the corrosion of carbon steel in reclaimed water used as circulating cooling water[J]. Appl. Surf. Sci., 2014, 315: 95
[24] Liu H, Gu T, Lv Y, et al.Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water[J]. Corros. Sci., 2017, 117: 24
[25] Li K J, Zheng B J, Chen B, et al.Effect of magnetic field on microbiologically-influenced corrosion behavior of Q235 steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 463
[25] (李克娟, 郑碧娟, 陈碧等. 磁场对Q235钢微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33: 463)
[26] Dong Z H, Liu T, Liu H F.Influence of EPS Isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27: 487
[27] Liu H F, Xu L M, Zheng J S.Steel corosion under srb biofilm: A review[J]. Oilfield Chem., 2000, 17: 93
[27] (刘宏芳, 许立铭, 郑家燊. 硫酸盐还原菌生物膜下钢铁腐蚀研究概况[J]. 油田化学, 2000, 17: 93)
[28] Zhou P, Qin S, Ye Q, et al.Monitoring and controlling growth of biofilm on carbon steel surface in oilfield sewage[J]. Mater. Prot., 2013, 46(11): 20
[28] (周平, 秦双, 叶琴等. 油田污水中碳钢表面生物膜的生长监测与控制[J]. 材料保护, 2013, 46(11): 20)
[29] Zhao Y, Xue W B, Liu H F.Effect of rare earth Ce3+ on the microbial induced corrosion behavior of aluminum alloy LY12CZ[J]. Acta Phys.-Chim. Sin., 2012, 27: 2618
[29] (赵勇, 薛文斌, 刘宏芳. 稀土铈对铝合金LY12CZ微生物腐蚀行为的影响[J]. 物理化学学报, 2012, 27: 2618)
[30] Liu H W, Chen B, Zhang F, et al.Effects of iron-oxidizing bacteria on carbon steel in oilfield produced water[J]. ECS Trans., 2014, 59: 409
[31] Hall-Stoodley L, Stoodley P.Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends Microbiol., 2005, 13: 7
[32] Chandra J, Kuhn D M, Mukherjee P K, et al.Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance[J]. J. Bacteriol., 2001, 183: 5385
[33] Enning D, Garrelfs J.Corrosion of iron by sulfate-reducing bacteria: New views of an old problem[J]. Appl. Environ. Microbiol., 2014, 80: 1226
[34] Lenhart T R, Duncan K E, Beech I B, et al.Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces[J]. Biofouling, 2014, 30: 823
[35] Xia J, Yang C G, Xu D K, et al.Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm[J]. Biofouling, 2015, 31: 481
[36] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion (MIC) of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[37] Zhang Y J, Li S, Xu P, et al.Effect of NaClO addition on bacteriostasis of iron bacteria and corrosion control of pipe line steel for water distribution network in urban reclaimed water[J]. Corros. Sci. Prot. Technol., 2015, 27: 165
[37] (张雅君, 李斯, 许萍等. 再生水管网基于IB与腐蚀控制的NaClO投加量研究[J]. 腐蚀科学与防护技术, 2015, 27: 165)
[38] Sun H F, Shi B Y, Lytle D A, et al.Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system[J]. Environ. Sci. Process. Impacts, 2014, 16: 576
[39] Emerson D, Fleming E J, McBeth J M. Iron-oxidizing bacteria: an environmental and genomic perspective[J]. Annu. Rev. Microbiol., 2010, 64: 561
[40] Xu C M, Zhang Y H, Cheng G X, et al.Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J]. Mater. Charact., 2008, 59: 245
[41] Li X, Wang H, Hu X, et al.Characteristics of corrosion sales and biofilm in aged pipe distribution systems with switching water source[J]. Eng. Fail. Anal., 2016, 60: 166
[42] Lang X F, Qiu L N, Gong A J, et al.Review on microbiologically influenced corrosion and antisepsis techniques[J]. Total Corros. Control, 2009, 23(10): 20
[42] (郎序菲, 邱丽娜, 弓爱君等. 微生物腐蚀及防腐技术的研究现状[J]. 全面腐蚀控制, 2009, 23(10): 20)
[43] Yang L, Barken K B, Skindersoe M E, et al.Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa[J]. Microbiology, 2007, 153: 1318
[44] Homborg A M, Morales C F L, Tinga T, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients[J]. Electrochim. Acta, 2014, 136: 223
[45] Dong Z H, Shi W, Ruan H M, et al.Heterogeneous corrosion of mild steel under srb-biofilm characterised by electrochemical mapping technique[J]. Corros. Sci., 2011, 53: 2978
[46] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[47] Liu H W, Liu H F, Qin S, et al.Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield[J]. Corros. Sci. Prot. Technol., 2015, 27: 7
[47] (刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查[J]. 腐蚀科学与防护技术, 2015, 27: 7)
[48] Starosvetsky D, Armon R, Yahalom J, et al.Pitting corrosion of carbon steel caused by iron bacteria[J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
[49] Teng F, Guan Y T, Zhu W P.Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation[J]. Corros. Sci., 2008, 50: 2816
[50] Dignac M F, Urbain V, Rybacki D, et al.Chemical description of extracellular polymers: Implication on activated sludge floc structure[J]. Water Sci. Technol., 1998, 38: 45
[51] Ghafari M D, Bahrami A, Rasooli I, et al.Bacterial exopolymeric inhibition of carbon steel corrosion[J]. Int. Biodeterior. Biodegrad., 2013, 80: 29
[52] Huang D M.Investigation of cariogenicity induced by Streptococcus Mutans and Streptococcus Sobrinus[J]. Shanghai J. Stomatol., 1996, 5(2): 98
[52] (黄定明. 变形链球菌和远缘链球菌致龋性的研究近况[J]. 上海口腔医学, 1996, 5(2): 98)
[53] Jin J T, Wu G X, Zhang Z H, et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
[54] Washizu N, Katada Y, Kodama T.Role of H2O2 in microbially influenced ennoblement of open circuit potentials for type 316L stainless steel in seawater[J]. Corros. Sci., 2004, 46: 1291
[55] Chan K Y, Xu L C, Fang H H P. Anaerobic electrochemical corrosion rug of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria[J]. Environ. Sci. Technol., 2002, 36: 1720
[56] Jin J T, Guan Y T.The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes[J]. Bioresour. Technol., 2014, 169: 387
[57] van Beek C G E M, Hiemstra T, Hofs B, et al. Homogeneous, heterogeneous and biological oxidation of iron (II) in rapid sand filtration[J]. J. Water Supply: Res. Technol. AQUA, 2012, 61: 1
[58] Sharma S K, Petrusevski B, Schippers J C.Biological iron removal from groundwater: A review[J]. J. Water Supply: Res. Technol.AQUA, 2005, 54: 239
[59] Xu J, Xu B, Zhang Z W, et al.Infulence of saccharides in the EPS of iron bacteria on Q235 carbon steel in the 1 mol/L Na2SO4 solution[J]. Water Treat. Inform. Cover., 2014, (3): 7
[59] (徐洁, 徐斌, 张振武等. 铁细菌胞外聚合物中糖类在1 mol/L Na2SO4溶液中对Q235碳钢的影响[J]. 水处理信息报导, 2014, (3): 7)
[60] Beech I B, Sunner J.Biocorrosion: Towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
[61] Emerson D, Moyer C.Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Appl. Environ. Microbiol., 1997, 63: 4784
[62] Zhai F T, Li H H, Xu C M.Corrosion behavior of 2507 duplex stainless steel in cooling water with different IOB contents[J]. J. Xi'an Technol. Univ., 2015, 35: 654
[62] (翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含铁氧化菌冷却水中的腐蚀行为[J]. 西安工业大学学报, 2015, 35: 654)
[63] Neubauer S C, Emerson D, Megonigal J P.Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J]. Appl. Environ. Microbiol., 2002, 68: 3988
[64] Roden E E, Sobolev D, Glazer B, et al.Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface[J]. Geomicrobiol. J., 2004, 21: 379
[65] Emerson D, de Vet W. The role of feob in engineered water ecosystems: A review[J]. J. Am. Water Works Assoc., 2015, 107: E47
[66] Liu H W, Gu T Y, Zhang G A, et al.The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria[J]. Corros. Sci., 2016, 102: 93
[67] McBeth J M, Little B J, Ray R I, et al. Neutrophilic iron-oxidizing "Zetaproteobacteria" and mild steel corrosion in nearshore marine environments[J]. Appl. Environ. Microbiol., 2011, 77: 1405
[68] Wang H, Ju L K, Castaneda H, et al.Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans[J]. Corros. Sci., 2014, 89: 250
[69] Starosvetsky J, Starosvetsky D, Pokroy B, et al.Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling[J]. Corros. Sci., 2008, 50: 540
[70] Liu H F, Zheng B J, Xu D D, et al.Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system[J]. Ind. Eng. Chem. Res., 2014, 53: 7840
[71] Li S M, Wang Y Q, Liu J H, et al.Synergism effect of thiobacillus ferrooxidans and thioacillus thiooxidan on the corrosion behavior of steel Q235[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 182
[71] (李松梅, 王彦卿, 刘建华等. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29: 182)
[72] Sung E H, Han J S, Ahn C M, et al.Biological metal corrosion in saline systems by sulfur-reducing and iron-oxidizing bacteria[J]. Water Qual. Res. J., 2011, 46: 321
[73] Duan Y, Li S M, Du J, et al.Corrosion behavior of Q235 Steel in the presence of Pseudomonas and iron bacteria[J]. Acta Phys.-Chim. Sin., 2010, 26: 3203
[73] (段冶, 李松梅, 杜娟等. Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为[J]. 物理化学学报, 2010, 26: 3203)
[74] Gu C X, Yu Y, Ji G J, et al.Corrosion behavior of 304 stainless steel under the combination action of mixed bacteria[J]. Ship Eng., 2011, 33(4): 100
[74] (顾彩香, 于阳, 吉桂军等. 304不锈钢在混合菌种共同作用下的腐蚀行为[J]. 船舶工程, 2011, 33(4): 100)
[75] Sheng X X, Ting Y P, Pehkonen S O.The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corros. Sci., 2007, 49: 2159
[76] Heidelberg J F, Seshadri R, Haveman S A, et al.The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough[J]. Nat. Biotechnol., 2004, 22: 554
[77] Little B J, Gerke T L, Lee J S.Mini-review: The morphology, mineralogy and microbiology of accumulated iron corrosion products[J]. Biofouling, 2014, 30: 941
[78] Yi W, Zhang D, Liu H Q, et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J]. Electrochim. Acta, 2010, 55: 1528
[79] Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[80] Qin X.Study on the corrosion behavior and microbial influence for Q235 Steel in Zhoushan seawater [D]. Tianjin: Tianjin University, 2007
[80] (戚欣. Q235钢在舟山海域的腐蚀行为及微生物影响的研究 [D]. 天津: 天津大学, 2007)
[81] Gomez-Smith C K, LaPara T M, Hozalski R M. Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system[J]. Environ. Sci. Technol., 2015, 49: 8432
[82] Mansouri H, Alavi S A, Fotovat M.Microbial-influenced corrosion of corten steel compared with carbon steel and stainless steel in oily wastewater by Pseudomonas aeruginosa[J]. JOM, 2015, 67: 1594
[83] Yin F.The synthesis and performance study of environment friendly bis-quaternary ammonium salt [D]. Xi’an: Shaanxi Normal University, 2008
[83] (殷飞. 环境友好型双季铵盐的合成及性能研究 [D]. 西安: 陕西师范大学, 2008)
[84] Li F X, Wang Z K, Liu H L, et al.The pipeline corrosion induced by bacteria and sterilization experiments[J]. Oil-Gas Field Surf. Eng., 2014, 33(9): 22
[84] (李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验[J]. 油气田地面工程, 2014, 33(9): 22)
[85] Liu H F, Qin S, Chen B, et al.An amino acid agent used to strip biofilm [P]. Chin.Pat., 103734133A, 2014
[85] (刘宏芳, 秦双, 陈碧等. 一种氨基酸复合生物膜剥离剂 [P]. 中国专利, 103734133A, 2014)
[86] Liu J H, Liu F, Li S M.Synthesis and characteristic of two new types of quaternary phosphonium salts[J]. Corros. Sci. Prot. Technol., 2001, 13: 85
[86] (刘建华, 刘芳, 李松梅. 新型季鏻盐型缓蚀杀菌剂的合成及其特性[J]. 腐蚀科学与防护技术, 2001, 13: 85)
[87] Xu J J, Hu Z Q, Zhao Y L, et al.The bactericide of acidthiobacillus ferroxidans in acid coal waste piles[J]. China Min. Mag., 2014, 23(1): 62
[87] (徐晶晶, 胡振琪, 赵艳玲等. 酸性煤矸石山中氧化亚铁硫杆菌的杀菌剂研究现状[J]. 中国矿业, 2014, 23(1): 62)
[88] Li H H, Xu C M, Yang D P.Effect of SS317NC bactericide on corrosion behavior of 10 steel in circulating cooling water[J]. Mater. Mech. Eng., 2015, 39(10): 11
[88] (李辉辉, 胥聪敏, 杨东平. 循环冷却水中ss317nc型杀菌剂对10钢腐蚀行为的影响[J]. 机械工程材料, 2015, 39(10): 11)
[89] Liu H F, Yang H X, Huang L, et al.An environmentally friendly bromine-based bactericide and its antibacterial and anticorrosion performance[J]. Mater. Prot., 2008, 41(7): 18
[89] (刘宏芳, 杨华啸, 黄玲等. 环境友好型溴类杀菌剂的合成及其抗菌防腐蚀性能研究[J]. 材料保护, 2008, 41(7): 18)
[90] Wen J, Zhao K L, Gu T Y, et al.A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde[J]. Int. Biodeterior. Biodegrad., 2009, 63: 1102
[91] Wen J, Zhao K, Gu T, et al.Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth[J]. World J. Microbiol. Biotechnol., 2010, 26: 1053
[92] Schultz T P, Nicholas D D.Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators[J]. Phytochemistry, 2002, 61: 555
[93] Xu D, Wen J, Fu W, et al.D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm[J]. World J. Microbiol. Biotechnol., 2012, 28: 1641
[94] Xu D, Li Y, Gu T.D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio Vulgaris biofilm and biocorrosion pitting[J]. Mater. Corros., 2014, 65: 837
[95] Xu D, Li Y, Gu T.A synergistic d-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm[J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
[96] Duan Y, Yu F, Zhao D, et al.The inhibition performance of a new imidazoline derivative for mild steel in an oil and gas field[J]. Pet. Sci. Technol., 2013, 31: 1959
[97] Lv Z L, Qiu Y B, Guo X P.Effect of pH value on the adsorption behavior and inhibition mechanism of dodecylamine on carbon steel[J]. Acta Phys.-Chim. Sin., 2008, 24: 243
[98] Chen G, Zhang M, Zhao J R, et al.Investigation of Ginkgo biloba leave extracts as corrosion and oil field microorganism inhibitors[J]. Chem. Central J., 2013, 7: 83
[99] Zhang F, Liu H W, Chen B, et al.Research on the long-lasting of imidazoline inhibition in CO2-saturated and SRB simulated sewage[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 156
[99] (张帆, 刘宏伟, 陈碧等. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35: 156)
[100] Wu Y N, Zhang F, Liu H W, et al.Corrosion inhibition performance of lauric acid and thiourea for carbon steel in a CO2-saturated and SRB-containing artificial sewage[J]. Corros. Sci. Prot. Technol., 2015, 27: 219
[100] (吴亚楠, 张帆, 刘宏伟等. 月桂酸和硫脲在饱和CO2和SRB共存污水中缓蚀行为的研究[J]. 腐蚀科学与防护技术, 2015, 27: 219)
[101] Moradi M, Duan J Z, Du X Q.Investigation of the effect of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one inhibition on the corrosion of carbon steel in Bacillus sp. inoculated artificial seawater[J]. Corros. Sci., 2013, 69: 338
[102] Stra?ák L, Vetterl V R, ?marda J.Effects of low-frequency magnetic fields on bacteria Escherichia coli[J]. Bioelectrochemistry, 2002, 55: 161
[103] Zhang X Y, Liu D.Effect of magnetic field on the cell division of protozoa[J]. Chin. Sci. Bull., 1987, 32: 936
[103] (张小云, 刘栋. 恒定强磁场对原生动物细胞分裂的影响[J]. 科学通报, 1987, 32: 936)
[104] Kohno M, Yamazaki M, Kimura I I, et al.Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli[J]. Pathophysiology, 2000, 7: 143
[105] Hinds G, Coey J, Lyons M E G. Influence of magnetic forces on electrochemical mass transport[J]. Electrochem. Commun., 2001,3: 215
[106] Leventis N, Dass A.Demonstration of the elusive concentration-gradient paramagnetic force[J]. J. Am. Chem. Soc., 2005, 127: 4988
[107] Sueptitz R, Tschulik K, Uhlemann M, et al.Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions[J]. Corros. Sci., 2011, 53: 3222
[108] Fojt L, Vetterl V.Electrochemical evaluation of extremely-low frequency magnetic field effects on sulphate-reducing bacteria[J]. Folia Biol., 2012, 58: 44
[109] Fojt L, Stra?ák L, Vetterl V.Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability[J]. Electrom. Biol. Med., 2010, 29: 177
[110] Zheng B J, Li K J, Liu H F, et al.Effects of magnetic fields on microbiologically influenced corrosion of 304 stainless steel[J]. Ind. Eng. Chem. Res., 2014, 53: 48
[111] Costa I, Oliveira M C L, de Melo H G, et al. The effect of the magnetic field on the corrosion behavior of Nd-Fe-B permanent magnets[J]. J. Magn. Magn. Mater., 2004, 278: 348
[1] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[2] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[3] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[4] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[5] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[6] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[7] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[8] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[9] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[11] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[12] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
No Suggested Reading articles found!