Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 837-842    DOI: 10.11902/1005.4537.2020.183
Current Issue | Archive | Adv Search |
Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel
LEI Zheyuan, WANG Yicong, HU Qian(), HUANG Feng, LIU Jing
Hubei Engineering Technology Research Center of Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(4594KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Test pieces of 2002 duplex stainless steel composed of different proportion of phases with various amount of alloying elements were prepared by solution treatment. The effect of microstructure partition on the pitting initiation and propagation of the steel in 3.5% (mass fraction) NaCl solution were investigated by means of potentiostatic polarization, potentiodynamic scanning and surface morphology analysis. Results show that with the increase of solution treatment temperature, the main alloying elements gather to γ phase, the volume faction of α phase increases but the anti-corrosion property of the steel decreases, therewith, pitting initiates on α phase more easily. As a consequence, the pitting resistance of 2002 DSS decreases. The formed pits present lacework-like morphology, beneath the cover of a lacework there is a dish-lie pit with larger mouth opening but shallower depth. In a word, 2002 duplex stainless steel exhibits better corrosion resistance, which may be ascribed to that the formed pits on the steel surface tend preferentially to grow laterally but not deeply.

Key words:  duplex stainless steel      microstructure distribution      pitting initiation      pitting propagation     
Received:  03 October 2020     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51871171)
Corresponding Authors:  HU Qian     E-mail:  huqian@wust.edu.cn
About author:  HU Qian, E-mail: huqian@wust.edu.cn

Cite this article: 

LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 837-842.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.183     OR     https://www.jcscp.org/EN/Y2021/V41/I6/837

Fig.1  Metallographic observation of 1# (a), 2# (b) and 3# (c) 2002 duplex stainless steel samples
SampleSolution treatment temperaturePhaseVolume fraction %Mass fraction / %
CrMoN
1#---α53.322.00±0.790.35±0.060.05
γ46.718.86±0.750.21±0.070.31
2#1100 ℃α57.421.87±0.680.32±0.100.05
γ42.619.13±0.690.31±0.080.34
3#1200 ℃α68.421.60±0.740.29±0.060.05
γ31.619.73±0.690.35±0.060.43
Table 1  Proportion of α and γ phases and distribution of main elements in three 2002 duplex stainless steel samples
Fig.2  Anodic polarization curves (a) and local enlarged drawings (b) of three 2002 duplex stainless steel samples
Fig.3  Pits morphologies and densities for 2002 duplex stainless steel samples after potentiostatic polarization: pits morph-ologies for samples 1# (a), 2# (b) and 3# (c); pits density calculated from Fig.3a (d), 3b (e) and 3c (f)
Fig.4  Morphologies and three-dimensional size of pits for 2002 duplex stainless steel samples after potentiostatic polariza-tion: pits morphologies for samples 1#(a), 2#(b) and 3#(c); enlargement of Fig.4a (d), 4b (e) and 4c (f); average three-dimensional size measured from Fig.4a (g), 4b (h) and 4c (i)
Fig.5  PREN values of two phases in three 2002 duplex stainless steel samples
Fig.6  Surface morphologies of 1# (a) and 3# (b) 2002 duplex stainless steel samples after polarization
Fig.7  Schematic of lace cover formation: (a) precipitation formation, (b) lace covers formation, (c) lace covers development
Fig.8  Schematic of horizontal expansion of pit in samples with different anti-corrosion property
1 Wu D C, Han P D. Effects of moderate temperature aging treatment on corrosion resistance of SAF2304 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 51
武栋才, 韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 51
2 Tong H S, Sun Y H, Su Y J, et al. Investigation on Hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
童海生, 孙彦辉, 宿彦京等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
3 Pang X G, Liu R Q, Wang W T, et al. Effect of aging temperature on microstructure and corrosion resistance of S32750 super duplex stainless steel in hydrofluoric acid [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 519
逄旭光, 刘润青, 王文涛等. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 519
4 Yang Y Z. Investigatating pitting and crevice corrosion behavior of nickel conservation duplex stainless steel [D]. Shanghai: Fudan University, 2013
杨雁泽. 资源节约型双相不锈钢点蚀和缝隙腐蚀行为研究 [D]. 上海: 复旦大学, 2013
5 Han D. Investigation on the mechanism of localized electrochemical corrosion behavior of duplex stainless steel [D]. Shanghai: Fudan University, 2012
韩冬. 双相不锈钢局部电化学失效行为与机理的研究 [D]. 上海: 复旦大学, 2012
6 Zhang L H, Zhang W, Jiang Y M, et al. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101 [J]. Electrochim. Acta, 2009, 54: 5387
7 Zhang L H. Study on the corrosion behavior of economical duplex stainless steel 2101 [D]. Shanghai: Fudan University, 2013
张丽华. 经济型双相不锈钢2101的腐蚀行为研究 [D]. 上海: 复旦大学, 2010
8 Guo Y J, Sun T Y, Hu J C, et al. Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002 [J]. J. Alloy. Compd., 2016, 658: 1031
9 Feng H, Song Z G, Wu X H, et al. Relationship between selective corrosion behavior and duplex structure of 022Cr25Ni7Mo4N duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 138
丰涵, 宋志刚, 吴晓涵等. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究 [J]. 中国腐蚀与防护学报, 2019, 39: 138
10 Ernst P, Laycock N J, Moayed M H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
11 Ernst P, Newman R C. Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics [J]. Corros. Sci., 2002, 44: 927
12 Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
13 Chen Z G, Zhang G F, Bobaru F. The Influence of passive film damage on pitting corrosion [J]. J. Electrochem. Soc., 2016, 163: C19
14 Scheiner S, Hellmich C. Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary [J]. Corros. Sci., 2007, 49: 319
[1] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[4] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[5] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[7] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] Xuguang PANG, Runqing LIU, Wentao WANG, Yanhua SHI, Fei LI, Ping LIANG. Effect of Aging Temperature on Microstructure and Corrosion Resistance of S32750 Super Duplex Stainless Steel in Hydrofluoric Acid[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[9] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[10] Zhaohui SUN,Moradi Masoumeh,Lijing YANG,Bagheri Robabeh,Zhenlun SONG,Yanxia CHEN. Effect of Bacillus Vietnamensis as an Iron Oxidizing Bacterium on Corrosion of 2507 Duplex Stainless Steel in Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[11] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[12] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[13] LIU Zuojia,CHENG Xuequn,LI Xiaogang,LIU Xiaohui. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[14] Yan Fu. A Study on the Selective Dissolution Behavior of Duplex Stainless Steel in Systems Containing Nitric Acid[J]. 中国腐蚀与防护学报, 2004, 24(5): 272-275 .
[15] Jingjun Liu; Yuzhen Lin; Xingyue Yong. NUMERICAL SIMULATION OF EROSION-CORROSION OF DUPLEX STAINLESS STEEL IN SINGLE-PHASE FLOW[J]. 中国腐蚀与防护学报, 2003, 23(5): 290-294 .
No Suggested Reading articles found!