Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 529-538    DOI: 10.11902/1005.4537.2019.256
Current Issue | Archive | Adv Search |
Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station
LIU Xiao1, WANG Hai2, ZHU Zhongliang1, LI Ruitao1, CHEN Zhenyu1, FANG Xudong3, XU Fanghong3, ZHANG Naiqiang1()
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
2. Guodian Power Development Co. , Ltd. Zhejiang Branch Company, Hangzhou 310020, China
3. Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. , Ltd. , Taiyuan 030003, China
Download:  HTML  PDF(19324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the good oxidation resistance and high creep strength, austenitic steel is widely used in the construction of supercritical power station boilers, such as boiler super-heater and re-heater tubes, and thus its oxidation resistance in supercritical water is receiving more and more attention. The oxidation characteristics of austenitic steel HR3C and Sanicro25 are studied in supercritical water at 650 ℃/25 MPa and 700°C/25 MPa for 1000 h. The surface morphology, cross-sectional morphology, element distribution and phase composition of the formed oxide scales on the steels are characterized by means of SEM, XRD and Raman spectroscopy. The results show that the formed oxide scales on HR3C and Sanicro25 in supercritical water present a double layered structure, that is to say, the outer layer is composed of Fe-rich nodular oxide, and the inner layer consists of Cr-rich dense oxide. The oxidation rate of austenitic steel HR3C and Sanicro25 in supercritical water increase significantly with the increase in temperature. The curves of oxidation mass gain vs time may be fitted with exponential functions with exponents of 0.46 and 0.66 at 650 ℃, as well as 0.42 and 0.22 at 700 ℃ for HR3C and Sanicro25 respectively. There are small differences in oxidation mass gain between the two austenitic steels. The phase composition of the oxide scales on austenitic steel HR3C and Sanicro25 is basically the same for a given temperature, while Cr2O3 is detected. In addition, pores are observed in the outer layers on the two steels oxidized at 700 ℃, which may act as short circuit for oxygen inward diffusion. The results also show that austenitic steel HR3C and Sanicro25 have similar resistance to high temperature oxidation in supercritical water. The influence of temperature on the formation process of the oxide scales on austenitic steel HR3C and Sanicro25 and the process of the formation of nodular scales are also discussed briefly.

Key words:  austenitic steel      oxidation      temperature      supercritical water     
Received:  12 December 2019     
ZTFLH:  TG178  
Fund: Beijing Municipal Science and Technology Project(Z181100005218006);Beijing Municipal Natural Science Foundation(2194085)
Corresponding Authors:  ZHANG Naiqiang     E-mail:  zhnq@ncepu.edu.cn

Cite this article: 

LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 529-538.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.256     OR     https://www.jcscp.org/EN/Y2020/V40/I6/529

SteelCSiMnNiCrCuNbNWPSCoFe
HR3C0.060.391.2420.2924.63---0.490.24---0.0120.001---Bal.
Sanicro250.080.250.5125.522.62.990.440.243.45------1.57Bal.
Table 1  Chemical compositions of HR3C and Sanicro25 steels (mass fraction / %)
Fig.1  Oxidation mass gain curves of HR3C and Sanicro25 steels in supercritical water at 650 and 700 ℃
Fig.2  Surface morphologies of HR3C steel oxidized in supercritical water at 650 ℃ (a, b) and 700 ℃ (c, d) for 200 h (a, c) and 1000 h (b, d)
Fig.3  Surface morphologies of Sanicro25 steel oxidized in supercritical water at 650 ℃ (a, b) and 700 ℃ (c, d) for 200 h (a, c) and 1000 h (b, d)
Fig.4  EDS results in the marked regions 1 (a), 2 (b), 3 (c) and 4 (d) in Fig.2
Oxide layerElementHR3CSanicro25
Nodular outer oxide layerFe35.1633.21
Cr1.511.21
Compact inner oxide layerFe29.0220.73
Cr20.2615.26
Ni15.2919.03
Table2  Contents of constituent elements of oxide scales formed on HR3C and Sanicro25 steels during oxidation at 650 ℃ (atomic fraction / %)
Fig.5  EDS results in the marked regions 1 (a), 2 (b), 3 (c) and 4 (d) in Fig.3
Fig.6  High magnification views of the square regions marked in Fig.2b (a) and Fig.3b (b), and outer (c, e, g, i) and inner (d, f, h, j) oxide scales formed on HR3C (c, d, g, h) and Sanicro25 (e, f, i, j) at 700 ℃ for 200 h (c~f) and 1000 h (g~j)
Fig.7  XRD spectra of HR3C (a, b) and Sanicro25 (c, d) steels oxidized for 1000 h in supercritical water at 650 ℃ (a, c) and 700 ℃ (b, d)
Fig.8  Raman diagrams of HR3C (a, b) and Sanicro25 (c, d) steels oxidized for 1000 h in supercritical water at 650 ℃ (a, c) and 700 ℃ (b, d)
Fig.9  Cross section morphologies (a~d) and corresponding EDS results (e, f) of HR3C (a, b) and Sanicro25 (c, d) steels oxidized in supercritical water for 1000 h at 650 ℃ (a, c) and 700 ℃ (b, d)
[1] Wu Y S, Zhang M C, Xie X S. The design and research of a new low cobalt-molybdenum Niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proc. Eng., 2015, 130: 617
doi: 10.1016/j.proeng.2015.12.280
[2] Zhao Z P, Yao M F. Exploring on development ultra-supercritical pressure power genetration units-development of USC units in China as viewed from the materials [J]. Power Eng., 2000, 20: 640
(赵中平, 姚珉芳. 超级超临界机组开发探讨-从材料的成就看我国超级超临界机组的发展 [J]. 动力工程, 2000, 20: 640)
[3] Zhao C Z, Wei S S, Gao Y L, et al. Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine [J]. J. Iron Steel Res., 2007, 19(9): 1
(赵成志, 魏双胜, 高亚龙等. 超临界与超超临界汽轮机耐热钢的研究进展 [J]. 钢铁研究学报, 2007, 19(9): 1)
[4] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-stearmside oxidation [J]. J. Mater. Proc. Eng. Perform., 2006, 15: 255
[5] Valicek J, Palkova Z, Harnicarova M, et al. Thermal and performance analysis of a gasification boiler and its energy efficiency optimization [J]. Energies, 2017, 10: 1066
doi: 10.3390/en10071066
[6] Wang J B. Analysis and prevention of oxidation peeling of power plant boilers in supercritical units [J]. Shandong Ind. Technol., 2019, (10): 205
(王具宝. 超临界机组电站锅炉氧化皮脱落的分析与防治 [J]. 山东工业技术, 2019, (10): 205)
[7] Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1 [J]. J. Mater. Eng. Perform., 2001, 10: 81
doi: 10.1361/105994901770345394
[8] Li J J, Ma H D, Wang Y G, et al. Investigation on oxidation behavior of super304H and HR3C steel in high temperature steam from a 1000 MW ultra-supercritical coal-fired boiler [J]. Energies, 2019, 12: 521
doi: 10.3390/en12030521
[9] Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
[10] Rutkowski B, Gil A, Czyrska-Filemonowicz A. Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
[11] Jia J W, Hou L F, Du H Y, et al. Research progress on high temperature oxidation and corrosion behavior of austenitic heat resistant steel Sanicro25 [J]. J. Funct. Mater., 2019, 50: 10057
(贾建文, 侯利锋, 杜华云等. Sanicro25奥氏体耐热钢的高温氧化和腐蚀行为研究进展 [J]. 功能材料, 2019, 50: 10057)
[12] Yang Z, Lu J T, Li Y, et al. Oxidation behavior of two austenitic steels used in 600 ℃ supercritical coal-fired power plants [J]. J. Iron Steel Res., 2017, 29: 221
(杨珍, 鲁金涛, 李琰等. 2种600 ℃超临界锅炉用奥氏体钢的高温氧化行为 [J]. 钢铁研究学报, 2017, 29: 221)
[13] Yang Z, Lu J T, Zhao X B, et al. Study on oxidation behaviours of HR3C in air and pure steam at 750 ℃ [J]. J. Chin. Soc. Power Eng., 2015, 35: 859
(杨珍, 鲁金涛, 赵新宝等. HR3C在750 ℃空气和水蒸气中的高温氧化行为研究 [J]. 动力工程学报, 2015, 35: 859)
[14] Shen C, Du D H, Sun Y, et al. Corrosion behavior of super austenitic stainless steel HR3C in SCW [J]. Corros. Prot., 2014, 35: 662
(沈朝, 杜东海, 孙耀等. 超级奥氏体不锈钢HR3C在SCW中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 662)
[15] Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700℃ [J]. Mater. Charact., 2017, 132: 119
doi: 10.1016/j.matchar.2017.07.023
[16] Zhang N Q, Cao Q, Gui J J, et al. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water [J]. Mater. Corros., 2018, 35: 461
[17] Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
doi: 10.11900/0412.1961.2015.00077
(彭志方, 任文, 杨超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325)
doi: 10.11900/0412.1961.2015.00077
[18] Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
[19] Yang H C, Chai G C, Ma Y H, et al. Oxidation behavior of Sanicro25 heat resistant austenitic steel for boiler tube in pressured steam [J]. Mater. Mech. Eng., 2019, 43(7): 42
(杨华春, 柴国才, 马云海等. 锅炉管用Sanicro25奥氏体耐热钢在带压蒸汽中的氧化行为 [J]. 机械工程材料, 2019, 43(7): 42)
[20] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃ [J]. Corros. Sci., 2006, 48: 2014
doi: 10.1016/j.corsci.2005.08.012
[21] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
doi: 10.1023/A:1018875024306
[22] Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water Vapor [J]. Oxid. Met., 2006, 66: 137
doi: 10.1007/s11085-006-9030-1
[23] Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
doi: 10.1007/s11085-018-9879-9
[24] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40: 337
doi: 10.1016/S0010-938X(97)00140-6
[25] Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1
(尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 腐蚀与防护, 2010, 30(1): 1)
[26] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Inter. Mater. Rev., 2010, 55: 129
doi: 10.1179/095066010X12646898728165
[27] Gao W H, Shen C, Zhang L F. Corrosion behavior of HR3C in supercritical water [J]. Atom. Ener. Sci. Technol., 2016, 50: 317
(高文华, 沈朝, 张乐福. HR3C在超临界水中的腐蚀性能研究 [J]. 原子能科学技术, 2016, 50: 317)
[28] Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
doi: 10.3724/SP.J.1037.2010.00037
(方圆圆, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844)
[29] Zhang X. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers [J]. Power Equip., 2015, 29: 439
(张显. 超超临界锅炉用奥氏体耐热钢Sanicro25的性能 [J]. 发电设备, 2015, 29: 439)
[30] Zhang X, Cai W H, Du S M, et al. Research situation and application prospect of Sanicro 25 heat-resistant steel [J]. Mater. Mech. Eng., 2019, 43(1): 1
(张新, 蔡文河, 杜双明等. Sanicro25耐热钢的研究现状及应用前景 [J]. 机械工程材料, 2019, 43(1): 1)
[31] Fulger M, Mihalache M, Ohai D, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. J. Nucl. Mater., 2011, 415: 147
doi: 10.1016/j.jnucmat.2011.05.007
[32] Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[4] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[5] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[9] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[15] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
No Suggested Reading articles found!