|
|
Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt |
ZHAO Dongyang1, ZHOU Yu1( ), WANG Dongying2, NA Duo1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. Nuclear Division, Shenyang Blower Works Group Co. , Ltd. , Shenyang 110869, China |
|
|
Abstract The effect of phosphating on the fracture behavior of a domestic SA-540 B23 steel used for nuclear reactor coolant pump bolt is studied by scanning electron microscope (SEM), hydrogen content analysis and in-situ hydrogen charging slow strain rate test (SSRT). The result shows that phosphating treatment has no effect on the fracture properties of B23 steel. Hydrogen content analysis shows that hydrogen is mainly distributed in the phosphate coating instead of the substrate. Hydrogen embrittlement tests show that B23 has obvious hydrogen embrittlement susceptibility under the attack of hydrogen, and the fracture feature is intergranular cracking.
|
Received: 19 July 2019
|
|
Corresponding Authors:
ZHOU Yu
E-mail: yzhou@imr.ac.cn
|
[1] |
Yang J W, Wang X D, Liu L. Research and development on pump shell casting of CAP1400 nuclear main pump [J]. Found. Technol., 2018, 39: 812
|
|
(杨继伟, 王雪东, 刘连. CAP1400核主泵泵壳铸件的研发 [J]. 铸造技术, 2018, 39: 812)
|
[2] |
Xue X H, Wang Z Y, Li T Y, et al. Microstructure of pressure boundary welded joint of CAP1400 steam generator [J]. Mater. Mech. Eng., 2018, 42(2): 22
|
|
(薛小怀, 王志颖, 李天宇等. CAP1400蒸汽发生器压力边界焊接接头的显微组织 [J]. 机械工程材料, 2018, 42(2): 22)
|
[3] |
Zheng G M. From AP1000 to CAP1400, self-reliant process of China’s third generation nuclear power [J]. China Nucl. Power, 2018, 11: 41
|
|
(郑光明. 从AP1000到CAP1400, 我国先进三代非能动核电技术自主化历程 [J]. 中国核电, 2018, 11: 41)
|
[4] |
Ni X P. Occurrence and prevention of hydrogen embrittlement in surface treatment [J]. Plat. Finish., 2010, 32(4): 27
|
|
(倪小平. 表面处理过程中氢脆的产生与预防 [J]. 电镀与精饰, 2010, 32(4): 27)
|
[5] |
Li L Q, Cao Y X, Tang Q P. Study on phosphating process for iron and steel parts at room temperature [J]. Electroplat. Pollut. Control, 2019, 39(3): 49
|
|
(李立群, 曹永香, 唐庆平. 钢铁零件常温磷化工艺的研究 [J]. 电镀与环保, 2019, 39(3): 49)
|
[6] |
Miao Y M, Li X M. Application of manganese-based phosphating in surface anti-rust process [J]. Mod. Paint Finish., 2017, 20(7): 58
|
|
(苗彦民, 李晓民. 锰系磷化在表面防锈工艺中的应用 [J]. 现代涂料与涂装, 2017, 20(7): 58)
|
[7] |
Ma D W, Shi Q Y, Yuan G M, et al. Effects of process parameters on morphology and corrosion resistance of manganese phosphating film on 38MnVS steel [J]. Surf. Technol., 2017, 46(8): 221
|
|
(马冬威, 史秋月, 袁国民等. 工艺参数对38MnVS钢锰系磷化膜表面形貌和耐蚀性的影响 [J]. 表面技术, 2017, 46(8): 221)
|
[8] |
Ju G L. Fracture reason analysis for 35CrMoA bolt [J]. Hot Work. Technol., 2012, 41(20): 223
|
|
(巨根利. 35CrMoA螺栓断裂原因分析 [J]. 加工工艺, 2012, 41(20): 223)
|
[9] |
Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms [A].Raja V S, Shoji T. Corrosion Cracking [M]. Oxford: Woodhead Publishing, 2011: 90)
|
[10] |
Li G Y, Niu L Y, Lian J S, et al. A black phosphate coating for C1008 steel [J]. Surf. Coat. Technol., 2004, 176: 215
doi: 10.1016/S0257-8972(03)00736-9
|
[11] |
Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Berich. Bunsen. Gesell., 1972, 76: 848
|
[12] |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Mater. Trans., 1972, 3B: 441
|
[13] |
Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
doi: 10.1016/0001-6160(88)90113-7
|
[14] |
Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
|
[15] |
Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
|
[16] |
Djukic M B, Zeravcic V S, Bakic G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model [J]. Eng. Fail. Anal., 2015, 58: 485
doi: 10.1016/j.engfailanal.2015.05.017
|
[17] |
Jiang Y F, Zhang B, Wang D Y, et al. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35: 1081
|
[18] |
Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
|
[19] |
Wang G, Yan Y, Li J X, et al. Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2 [J]. Corros. Sci., 2013, 77: 273
doi: 10.1016/j.corsci.2013.08.013
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|