Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 539-544    DOI: 10.11902/1005.4537.2019.110
Current Issue | Archive | Adv Search |
Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt
ZHAO Dongyang1, ZHOU Yu1(), WANG Dongying2, NA Duo1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Nuclear Division, Shenyang Blower Works Group Co. , Ltd. , Shenyang 110869, China
Download:  HTML  PDF(7644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of phosphating on the fracture behavior of a domestic SA-540 B23 steel used for nuclear reactor coolant pump bolt is studied by scanning electron microscope (SEM), hydrogen content analysis and in-situ hydrogen charging slow strain rate test (SSRT). The result shows that phosphating treatment has no effect on the fracture properties of B23 steel. Hydrogen content analysis shows that hydrogen is mainly distributed in the phosphate coating instead of the substrate. Hydrogen embrittlement tests show that B23 has obvious hydrogen embrittlement susceptibility under the attack of hydrogen, and the fracture feature is intergranular cracking.

Key words:  B23 bolt      phosphate      hydrogen embrittlement      fracture toughness     
Received:  19 July 2019     
ZTFLH:  TG178  
Corresponding Authors:  ZHOU Yu     E-mail:  yzhou@imr.ac.cn

Cite this article: 

ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 539-544.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.110     OR     https://www.jcscp.org/EN/Y2020/V40/I6/539

MaterialCSiMnSPCrNiMoFe
Domestic0.380.240.680.0030.0121.070.020.21Bal.
ASME0.37~0.440.15~0.350.15~0.350.0250.0250.65~0.951.55~20.2~0.3Bal.
Table 1  Chemical composition of B23 steel (mass fraction / %)
Fig.1  Dimensional drawings of tensile specimen (a) and fracture toughness specimen (b) and relational graph between fracture toughness KIC and specimen thickness B (c) (unit: mm)
Fig.2  Microstructure of B23 steel
Fig.3  Comparison of stress-strain curves of untreated and phosphated B23 main bolt samples during slow strain rate tension test in air
Fig.4  Slow strain rate tension curves of B23 main bolt samples in 1 mol/L NaCl solution (10 mA/cm2) under electrochemical hydrogen charging
Fig.5  Fracture morphology of B23 steel after slow strain rate tension in air at room temperature (a) and the magnified image of the red circle area marked in Fig.5a (b)
Fig.6  Fracture morphology of B23 steel after slow strain rate tension under electrochemical hydrogen charging at 10 mA/cm2 (a) and the magnified image of the red circle area marked in Fig.6a (b)
Measurement valueBefore phosphating / mg·kg-1After phosphating / mg·kg-1After removing the phosphating layer / mg·kg-1
10.8044.000.40
20.8049.000.42
30.9048.000.39
Average value0.8347.000.40
Table 2  Hydrogen contents of B23 main bolt specimens before and after phosphating and after removing the phosphating layer
Fig.7  P-V (a) and K-P (b) curves of untreated B23 main bolt during fracture toughness test
Fig.8  P-V (a) and K-P (b) curves of phosphated B23 main bolt during fracture toughness test
[1] Yang J W, Wang X D, Liu L. Research and development on pump shell casting of CAP1400 nuclear main pump [J]. Found. Technol., 2018, 39: 812
(杨继伟, 王雪东, 刘连. CAP1400核主泵泵壳铸件的研发 [J]. 铸造技术, 2018, 39: 812)
[2] Xue X H, Wang Z Y, Li T Y, et al. Microstructure of pressure boundary welded joint of CAP1400 steam generator [J]. Mater. Mech. Eng., 2018, 42(2): 22
(薛小怀, 王志颖, 李天宇等. CAP1400蒸汽发生器压力边界焊接接头的显微组织 [J]. 机械工程材料, 2018, 42(2): 22)
[3] Zheng G M. From AP1000 to CAP1400, self-reliant process of China’s third generation nuclear power [J]. China Nucl. Power, 2018, 11: 41
(郑光明. 从AP1000到CAP1400, 我国先进三代非能动核电技术自主化历程 [J]. 中国核电, 2018, 11: 41)
[4] Ni X P. Occurrence and prevention of hydrogen embrittlement in surface treatment [J]. Plat. Finish., 2010, 32(4): 27
(倪小平. 表面处理过程中氢脆的产生与预防 [J]. 电镀与精饰, 2010, 32(4): 27)
[5] Li L Q, Cao Y X, Tang Q P. Study on phosphating process for iron and steel parts at room temperature [J]. Electroplat. Pollut. Control, 2019, 39(3): 49
(李立群, 曹永香, 唐庆平. 钢铁零件常温磷化工艺的研究 [J]. 电镀与环保, 2019, 39(3): 49)
[6] Miao Y M, Li X M. Application of manganese-based phosphating in surface anti-rust process [J]. Mod. Paint Finish., 2017, 20(7): 58
(苗彦民, 李晓民. 锰系磷化在表面防锈工艺中的应用 [J]. 现代涂料与涂装, 2017, 20(7): 58)
[7] Ma D W, Shi Q Y, Yuan G M, et al. Effects of process parameters on morphology and corrosion resistance of manganese phosphating film on 38MnVS steel [J]. Surf. Technol., 2017, 46(8): 221
(马冬威, 史秋月, 袁国民等. 工艺参数对38MnVS钢锰系磷化膜表面形貌和耐蚀性的影响 [J]. 表面技术, 2017, 46(8): 221)
[8] Ju G L. Fracture reason analysis for 35CrMoA bolt [J]. Hot Work. Technol., 2012, 41(20): 223
(巨根利. 35CrMoA螺栓断裂原因分析 [J]. 加工工艺, 2012, 41(20): 223)
[9] Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms [A].Raja V S, Shoji T. Corrosion Cracking [M]. Oxford: Woodhead Publishing, 2011: 90)
[10] Li G Y, Niu L Y, Lian J S, et al. A black phosphate coating for C1008 steel [J]. Surf. Coat. Technol., 2004, 176: 215
doi: 10.1016/S0257-8972(03)00736-9
[11] Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Berich. Bunsen. Gesell., 1972, 76: 848
[12] Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Mater. Trans., 1972, 3B: 441
[13] Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
doi: 10.1016/0001-6160(88)90113-7
[14] Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
[15] Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
[16] Djukic M B, Zeravcic V S, Bakic G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model [J]. Eng. Fail. Anal., 2015, 58: 485
doi: 10.1016/j.engfailanal.2015.05.017
[17] Jiang Y F, Zhang B, Wang D Y, et al. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35: 1081
[18] Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
[19] Wang G, Yan Y, Li J X, et al. Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2 [J]. Corros. Sci., 2013, 77: 273
doi: 10.1016/j.corsci.2013.08.013
[1] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[2] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[3] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[9] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[10] XIE Bin, ZHU Shasha, LI Yulong, LAI Chuan, LIN Xiao, ZOU Like, HE Linxin, CHEN Neng. Corrosion Inhibition Performance of Diethylammonium O,O '-Di(2-phenylethyl)dithiophosphate for Q235 Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.
[11] ZENG Huijing, LI Guangyong, WU Huan, GAO Lixin, ZHANG Daquan. Synergistic Effect of Triethyl Phosphate and Cerium (IV) Ion on Corrosion Inhibition for Copper in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2014, 34(3): 271-276.
[12] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[13] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[14] CUI Xuejun, LIU Chunhai, LI Mingtian, LIN Xiuzhou, LIU Yuanhong. EFFECTS OF PARAMETERS ON SURFACE MORPHOLOGY AND CORROSION RESISTANCE OF PHOSPHATE FILM FOR AZ31 MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(6): 507-512.
[15] DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
No Suggested Reading articles found!