Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 182-190    DOI: 10.11902/1005.4537.2019.019
Current Issue | Archive | Adv Search |
Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System
QIN Yueqiang1,2, ZUO Yong1,2,3(), SHEN Miao1,3
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
Download:  HTML  PDF(6328KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 316L stainless steel (316LSS) in FLiNaK-CrF3/CrF2 redox system has been studied in this paper. The corrosion rate of 316LSS in molten salt was found to be dependent on the salt potential, which can be adjusted by varying the ratio of the ion pairs ([Cr3+]/[Cr2+]) in the molten salt. When the salt potential was controlled below -0.741 V vs Ni/NiF2 at 873 K or -0.703 V vs Ni/NiF2 at 823 K, the corrosion of 316LSS in the molten salt can be effectively inhibited. This conclusion was verified by the immersion corrosion tests. Another important and interesting feature of the redox buffering molten salt is that different metal- or alloy-materials have almost identical potential in the salt. This effect is significant for applying the modified Tafel method in the redox buffering system.

Key words:  redox buffering molten salt      molten salt potential      corrosion current density      corrosion inhibition      316L stainless steel     
Received:  23 January 2019     
ZTFLH:  O646.6  
Fund: Strategic Priority Research Program of Chinese Academy of Sciences(XDA02020400);Strategic Priority Research Program of Chinese Academy of Sciences(XDA21000000)
Corresponding Authors:  ZUO Yong     E-mail:  zuoyong@sinap.ac.cn

Cite this article: 

QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 182-190.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.019     OR     https://www.jcscp.org/EN/Y2020/V40/I2/182

Fig.1  Schematic diagram of experimental device
Fig.2  Ion-conducting tube made from HPBN for the Ni/NiF2 reference electrode
Fig.3  Illustration of Tafel extrapolation method in non-redox buffering molten salt system
Fig.4  Illustration of modified Tafel extrapolation method in redox buffering molten salt system
Fig.5  Cathodic polarization curves of 316LSS and Ag electrode in FLiNaK-CrF3/CrF2 redox buffering molten salt system
Fig.6  CV curves of Ag working electrode at 873 K in pure FLiNaK molten salt (scanning rate: 100 mV/s)
Fig.7  CV curves of Ag working electrode at 873 K in FLiNaK-CrF3/CrF2 molten salt (scanning rate: 100 mV/s)
Fig.8  CV curves of 316LSS working electrode at 873 K in FLiNaK-CrF3/CrF2 molten salt (scanning rate: 100 mV/s)
Temperature / KEp / VAverage / VRT/nFE1/2 (E?) / V
873-0.682---------
-0.667-0.6720.075-0.755
-0.666---------
823-0.669---------
-0.659-0.6640.071-0.743
-0.665---------
Table 1  Determined values of EP of Cr3+/Cr2+ and calculeted values of E1/2 based on CV tests
Fig.9  Variations of OCP of Ag and 316LSS at 873 K in FLiNaK molten salt containing 1000 μg·g-1 CrF3 with the content of added CrF2
Fig.10  Anodic polarization curves of pure Fe wire, 316LSS and Hastelloy C-276 (HC276) in FliNaK molten salt containing 500 μg·g-1 CrF3 at 873 K
Fig.11  Anodic polarization curves of Ag wire, pure Fe wire, 316LSS and Hastelloy C-276 (HC276) in FLiNaK-CrF3/CrF2 redox buffering molten salt system at 873 K
Fig.12  Photos of the salt cakes: (a) FLiNaK+1000 μg·g-1 CrF3, (b) FLiNaK+1000 μg·g-1 CrF3+800 μg·g-1 CrF2
Fig.13  Anodic polarization curves of 316LSS in FLiNaK molten salt at 873 and 823 K
Fig.14  Corrosion currents density of 316LSS in FLiNaK-CrF3/CrF2 redox buffering molten salt system under different molten potential conditions at 873 and 823 K
Fig.15  Cross sections of 316LSS after 100 h immersion in FLiNaK molten salt containing redox buffer salt under the condition of 873 K and -0.741 V potential (a) and in pure FLiNaK molten salt (b)
Fig.16  Anodic polarization curves of 316LSS and Ag electrodes at 873 and 823 K in FLiNaK-CrF3/CrF2 redox buffering molten salt with the different potentials of -0.712 V (a), -0.741 V (b), -0.667 V (c) and -0.743 V (d)
Fig.17  Anodic polarization curves obtained by applying modified Tafel method for 316LSS and Ag electrodes in FLiNaK-CrF3/CrF2 redox buffering system
[1] Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
[2] MacPherson H G. The molten salt reactor adventure [J]. Nucl. Sci. Eng., 1985, 90: 374
[3] Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
[4] Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts-a review [J]. Crit. Rev. Solid State Mater. Sci., 2017, 42: 83
[5] McCoy H E, Beatty R L, Cook W H, et al. New developments in materials for molten-salt reactors [J]. Nucl. Appl. Technol., 1970, 8: 156
[6] Liu M, Zheng J Y, Lu Y L, et al. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques [J]. J. Nucl. Mater., 2013, 440: 124
[7] Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy [J]. J. Nucl. Mater., 2017, 497: 76
[8] Zhu Y S, Qiu J, Hou J, et al. Effects of SO42- ions on the corrosion of GH3535 weld joint in FLiNaK molten salt [J]. J. Nucl. Mater., 2017, 492: 122
[9] Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K)F at 700 ℃ [J]. J. Fluor. Chem., 2015, 178: 14
[10] Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192
[11] Maric M, Muránsky O, Karatchevtseva I, et al. The effect of cold-rolling on the microstructure and corrosion behaviour of 316L alloy in FLiNaK molten salt [J]. Corros. Sci., 2018, 142: 133
[12] Yin H Q, Qiu J, Liu H J, et al. Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt [J]. Corros. Sci., 2018, 131: 355
[13] Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
(丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543)
[14] Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
[15] Guo S Q, Shay N, Wang Y F, et al. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept [J]. J. Nucl. Mater., 2017, 496: 197
[16] Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
[17] McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
[18] Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F [J]. Corros. Sci., 2016, 103: 268
[19] Peng H, Shen H, Wang C Y, et al. Electrochemical investigation of the stable chromium species in molten FLINAK [J]. RSC Adv., 2015, 5: 76689
[20] Mirkin M V, Bard A J. Simple analysis of quasi-reversible steady-state voltammograms [J]. Anal. Chem., 1992, 64: 2293
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[4] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[6] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[7] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[8] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[9] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[10] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[11] Tao YAN,Zhenlun SONG,Moradi Masoumeh,Lijing YANG,Tao XIAO,Lifeng HOU. Effect of Vibrio Neocaledonicus sp. on Corrosion Behavior of Copper in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
[12] Wenjing LV,Yingjun ZHANG,Chao SHI,Yawei SHAO,Yanqiu WANG,Guozhe MENG. Synthesis and Corrosion Inhibition Performance of Polyatyrolsulfon-acid Doped Polyaniline[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
[13] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[14] Yuna WANG, Kaibin NIE, Dong YANG, Juanyang YAO, Wantian DONG, Qiangqiang LIAO. Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
[15] Fang SONG,Youyuan CHEN,Qinpeng CHANG,Tao PENG. Corrosion Inhibition of Self-assembled Monolayer of Phytic Acid for HAl77-2 Brass[J]. 中国腐蚀与防护学报, 2015, 35(4): 317-325.
No Suggested Reading articles found!