Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 407-414    DOI: 10.11902/1005.4537.2014.200
Current Issue | Archive | Adv Search |
Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water
Yuna WANG1,Kaibin NIE1,Dong YANG1,Juanyang YAO2,Wantian DONG3,Qiangqiang LIAO1()
1. Key Lab of Shanghai Colleges and Universities for Corrosion Control in Electric Power and Applied Electrochemistry, Shanghai University of Electric Power, Shanghai 200090, China
2. Shanghai Fenghua Middle School, Shanghai 200072, China
3. Shanghai Fakai Chemical Industry Co. Ltd., Shanghai 201505, China
Download:  HTML  PDF(2017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion inhibition of 2-undecyl-N-carboxymethyl-N-hydroxyethyl imidazoline (UHCI) on carbon steel in an artificial water, which simulated the water produced by seawater reverse osmosis (RO) process, was investigated by mass loss test, electrochemical methods, and X-ray photoelectron spectroscopy (XPS). Results show that UHCI could inhibit the corrosion of carbon steel, and the inhibition efficiency increases with the increasing concentration of UHCI. The UHCI acts as an anodic type inhibitor responsible for reducing the anodic current density. XPS results suggest that UHCI was adsorbed on the mild steel surface, which can effectively protect carbon steel from corrosion in the artificial water. Quantum chemical calculation results reveal that carboxymethyl and the ring of UHCI play the important role when UHCI adsorbed on carbon steel surface, which leads to the enhancement in the corrosion resistance of carbon steel and thereby a reduction in the corrosion rate.

Key words:  20# carbon steel      imidazoline      corrosion inhibition      seawater desalination      reverse osmosis permeate     
ZTFLH:     
Fund:  

Cite this article: 

Yuna WANG, Kaibin NIE, Dong YANG, Juanyang YAO, Wantian DONG, Qiangqiang LIAO. Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 407-414.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.200     OR     https://www.jcscp.org/EN/Y2015/V35/I5/407

Fig.1  Molecular structure of 2-undecyl-N-carboxymethyl-N-hydroxyethly imidazoline
Fig.2  Optimized molecular structure of UHCI
Concentration / mgL-1 v / g(m2h)-1 η1 / %
0 1.653×10-1 0.000
20 1.014×10-1 38.680
50 6.289×10-2 61.950
100 5.666×10-2 65.720
150 8.471×10-3 94.880
180 3.663×10-3 97.780
Table 1  Calculated corrosion rates and inhibition efficiencies in mass loss tests
Fig.3  Polarization curves of carbon steel electrode after immersion for 1 d in simulated seawater RO product water with different concentrations of UHCI
Concentration mgL-1 Ecorr / mV vs SCE Icorr μAcm-2 η2 %
0 -654.8 64.790 0.000
20 -647.4 38.740 40.210
50 -430.5 23.140 64.280
100 -399.9 20.800 67.890
150 -328.5 1.139 98.240
180 -267.6 0.567 99.120
Table 2  Electrochemical parameters of the carbon steel electrode after immersion for 1 d in simulated seawater RO product water with different concentrations of UHCI
Fig.4  Nyquist (a) and Bode plots (b, c) of carbon steel electrode after immersion for 1d in simulated seawater RO product water with different concentrations of UHCI
Fig.5  Equivalent circuit of carbon steel electrode after immersion for 1 d in simulated seawater RO product water with different concentrations of UHCI
Concentration mgL-1 Rs Ωcm2 Rct kΩcm2 CPE μΩ-1cm-2sn n η3 %
0 136.2 0.101 755.6 0.504 ---
50 121.6 0.163 536.2 0.529 38.120
100 126.4 0.410 326.7 0.493 75.350
150 152.1 2.321 216.5 0.578 95.640
180 155.3 15.040 198.1 0.765 99.320
Table 3  Fitted results for EIS of carbon steel electrode
Fig.6  XPS full spectrum (a) and peak spectra of C1s (b), O1s (c), N1s (d) and Fe2p3/2 (e) of carbon steel specimen immersed in simulated seawater RO product water with 180 mg/L UHCI for 1d
Element Binding energy / eV Atomic fraction / %
C1s 285.7, 286.2 67.1
N1s 400.9, 399.9 3.7
O1s 532.6 25.9
Fe2p3/2 706.4, 712.0, 715.0 3.3
Table 4  Element content and binding energy of obtained<br/>tained by XPS for carbon steel after immersion for 1 d in simulated seawater RO product water with 180 mg/L UHCI
Fig.7  SEM images of the carbon steel electrodes after immersion for 1 d in simulated seawater RO product water without (a) and with (b) 180 mg/L UHCI
Fig.8  HOMO (a) and LUMO (b) of UHCI molecule
  
Atom f k + f k - f k 0 Charge
N5 7.357×10-2 3.472×10-2 5.414×10-2 -1.702×10-1
C4 6.674×10-2 4.365×10-3 3.555×10-2 1.434×10-1
O14 2.390×10-2 2.729×10-1 1.499×10-1 -3.819×10-1
O13 1.371×10-2 1.363×10-1 7.502×10-2 -3.632×10-1
C12 9.132×10-3 8.246×10-2 4.579×10-2 1.499×10-1
C11 4.870×10-3 5.833×10-2 3.160×10-2 -1.669×10-2
N2 2.898×10-3 6.835×10-3 4.867×10-3 4.595×10-2
Table 5  Calculated Fukui functions and atomic charges for part atoms of UHCI molecule
[1] Zhang G D. The water problem China is facing in the 21st century[J]. Adv. Earth Sci., 1999, 14(2): 16 (张光斗. 面临21世纪的中国水资源问题[J]. 地球科学进展, 1999,14(2): 16)
[2] National Development Reform Commission, the State Oceanic Administration and the Ministry of Finance. Water Use Special Plan [M]. Beijing: National Development and Reform Commission, the State Oceanic Administration and the Ministry of Finance, 2005 (国家发改委、国家海洋局和财政部. 海水利用专项规划 [M]. 北京: 国家发改委、国家海洋局和财政部, 2005)
[3] Malik A U, Andijani I, Mobin M, et al. An overview of the localized corrosion problems in seawater desalination plants—Some recent case studies[J]. Desalin. Water Treat., 2010, 20(1-3): 22
[4] Li J, Liu G C, Wang W, et al. Research of corrosion resistance of carbon steel in OR desalinated water[J]. Guangzhou Chem. Induction, 2009, 37(4): 95 (李敬, 刘贵昌, 王玮等. 碳钢在反渗透水中耐蚀性研究[J]. 广州化工, 2009, 37(4): 95)
[5] Malik A U, Andijani I N, Mobin M, et al. Corrosion behavior of materials in RO water containing 250~350 ppm chloride[J]. Desalination, 2006, 196(1): 149
[6] Marangou V S, Savvides K. First desalination plant in Cyprus-product water aggresivity and corrosion control[J]. Desalination, 2001, 138(1): 251
[7] Delion N, Mauguin G, Cosin R. Importance and impact of post treatments on design and operation of SWRO plants[J]. Desalination, 2004, 165(15): 323
[8] Wang H Y, Zhou D H, Liang Q Q, et al. Corrosion behavior of carbon steel in seawater and seawater reverse osmosis permeate[J]. Thermal Power Generation, 2012, 14(7): 66 (王宏义, 周东辉, 梁沁沁等. 碳钢在海水及海水淡化一级反渗透产水中的腐蚀行为[J]. 热力发电, 2012, 41(7): 66)
[9] Zhou D H, Wu S H, Xiao L, et al. Corrosion behavior of carbon steel in reverse osmosis permeate of seawater[J]. Corros. Prot., 2012, 33(12): 1057 (周东辉, 吴善宏, 肖丽等. 碳钢在海水淡化一级反渗透产水中的腐蚀行为[J]. 腐蚀与防护, 2012, 33(12): 1057)
[10] Hu J Y, Cao S A, Xie J L. Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water[J]. Acta Phys.-Chim. Sin., 2012, 28(5): 1153 (胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响[J]. 物理化学学报, 2012, 28(5): 1153
[11] Birnhack L, Voutchkov N, Lahav O. Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—A review[J]. Desalination, 2011, 273(1): 6
[12] Taylor J, Tang Z, Xiao W, et al. Monitoring of distribution water qualities under various source water blending[J]. Environ. Monit. Assess., 2006, 117(1-3): 59
[13] Wei C Z, Shen S R. Application of membrane method seawater desalination technology in Yuhuan power plant[J]. Electric Power Technol. Environ. Prot., 2010, 26(5): 48 (韦存忠, 沈隼睿. 膜法海水淡化技术在玉环电厂的应用[J]. 电力科技与环保, 2010, 26(5): 48)
[14] Liu G Z, Wang H T, Zhang X, et al. Corrosion inhibition of seawater reverse osmosis permeate [P]. China, CN101705489. 2010 (刘光洲, 王海涛, 张茜等. 一种海水淡化一级反渗透水的缓蚀剂[P]. 中国, CN101705489. 2010)
[15] Liao Q Q, Chen Y Q, Yan A J, et al. Corrosion inhibition of alkyl imidazoline on carbon steel in amidosulphuric acid solution[J]. J.Chin. Soc. Corros. Prot., 2011, 31(5): 356 (廖强强, 陈亚琼, 闫爱军等. 氨基磺酸溶液中烷基咪唑啉对碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2011, 31(5): 356)
[16] Parr R G, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity[J]. J. Am. Chem. Soc., 1984, 106(14): 4049
[17] Cao C N. Principles of Erosive Electrochemistry [M]. Beijing: Chemical Industry Press, 2008- (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[18] Chen Y Q, Liao Q Q, Dong W T, et al. Corrosion inhibition of a mixture containing imidazoline on carbon steel in citric acid solution[J]. Corros. Prot., 2012, 33(12): 1055 (陈亚琼, 廖强强, 董万田等. 柠檬酸介质中咪唑啉复配缓蚀剂对碳钢的缓蚀作用[J]. 腐蚀与防护, 2012, 33(12): 1055)
[19] Wang F P,Kang W L,Jing H M. Principles, Methods and Application of Corrosive Electrochemistry[M]. Beijing: Chemical Industry Press, 2008 (王凤平,康万利,敬和民等. 腐蚀电化学原理、方法及应用[M].北京: 化学工业出版社, 2008)
[20] Quan Z L, Chen S H, Li S L. Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol[J]. Corros. Sci., 2001, 43(6): 1071
[21] Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: A surface morphological and chemical study[J]. Corros. Sci., 2000, 42(9): 1623
[22] Feng L, Yang H, Wang F. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5%NaCl saturated Ca(OH)2 solution[J]. Electrochim. Acta, 2011, 58(30): 427
[23] Okafor P C, Liu C B, Liu X, et al. Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea[J]. J. Solid State Electrochem., 2009, 14(8): 1367
[24] Hu S Q, Hu J C, Yu J H, et al. Density functional theory on inhibition performance of CO2 corrosion-resistant imidazoline derivatives[J]. J. China Univ. Petrol.(Nat. Sci.), 2009, 33(6): 128 (胡松青, 胡建春, 郁金华等. 抗CO2腐蚀咪唑啉衍生物缓蚀性能的密度泛函理论[J]. 中国石油大学学报(自然科学版), 2009, 33(6): 128
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[7] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[8] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[9] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[10] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[11] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[12] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[13] Tao YAN,Zhenlun SONG,Moradi Masoumeh,Lijing YANG,Tao XIAO,Lifeng HOU. Effect of Vibrio Neocaledonicus sp. on Corrosion Behavior of Copper in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
[14] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[15] Wenjing LV,Yingjun ZHANG,Chao SHI,Yawei SHAO,Yanqiu WANG,Guozhe MENG. Synthesis and Corrosion Inhibition Performance of Polyatyrolsulfon-acid Doped Polyaniline[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
No Suggested Reading articles found!