Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 519-524    DOI: 10.11902/1005.4537.2014.199
Current Issue | Archive | Adv Search |
Synthesis and Corrosion Inhibition Performance of Polyatyrolsulfon-acid Doped Polyaniline
Wenjing LV,Yingjun ZHANG,Chao SHI,Yawei SHAO(),Yanqiu WANG,Guozhe MENG
Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Download:  HTML  PDF(874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyatyrolsulfon acid doped polyaniline (PSSA-PANI) was synthesized by emulsion polymerization method, and then was characterized by IR spectra and XPS. The synthesized PSSA-PANI exhibited good solubility in water. The corrosion inhibition performance of the PSSA-PANI on mild steel was examined in acidic NaCl solutions by means of electrochemical impedance spectroscopy (EIS). The results revealed that PSSA-PANI had a high conductivity. In the synthesized PSSA-PANI, PSSA existed in two states, namely doped-state and free-state, PSSA can improve not only the conductivity but also the water solubility of PANI. The PSSA-PANI showed good corrosion inhibition for 20# steel in acidic NaCl media with an inhibition efficiency over 80%.

Key words:  conductive polymer      water-soluble PSSA-PANI      doped      XPS      corrosion inhibition     

Cite this article: 

Wenjing LV,Yingjun ZHANG,Chao SHI,Yawei SHAO,Yanqiu WANG,Guozhe MENG. Synthesis and Corrosion Inhibition Performance of Polyatyrolsulfon-acid Doped Polyaniline. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 519-524.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.199     OR     https://www.jcscp.org/EN/Y2015/V35/I6/519

Fig.1  IR spectra of PSSA doped PANI
Sample An/—SO3H Solubility / %
1# 1:0.2 61
2# 1:0.4 85
3# 1:3 99
4# 1:8 99
Table 1  Solubility of doped PANI prepared at different molar ratios of An/—SO3H
Sample An/—SO3H Average conductivity / μS
Deionized water --- 1.1
4.4×10-5 PSSA solution --- 12.6
6.7×10-5 PSSA solution --- 19.8
1# 1:0.2 182.3
2# 1:0.4 254.0
3# 1:3 80.7
4# 1:8 122.4
Table 2  Average conductivity of PSSA solution and PANI prepared in different synthesis conditions
Fig.2  Molecular structure of polyaniline
Fig.3  N1s XPS spectra of sample 2# (a) and sample 4# (b)
Sample C N O S S/N
2# 55.69 10.39 25.34 8.58 0.83
4# 68.51 4.49 20.16 6.84 1.52
Table 3  Elements analysis of two PANI-PSSA samples(atomic fraction / %)
Sample Peak area N+/N
—NH —N+= —N+H—
2# 2123.0 799.4 11400.7 0.85
4# 1145.9 2426.9 1435.1 0.77
Table 4  N1s XPS spectra analysis of two PANI-PSSA samples
Fig.4  S2p XPS spectra of sample 2# (a) and sample 4# (b)
Fig.5  |Z | plots (a) and Nyquist plots (b) of 20# steel after immersion in 3.5%NaCl acid solution for 200 h
[1] Liao H X, He D K, Zhang A Q, et al.Progress in preparation and application of water-soluble conductive polyanilin[J]. Chem. Bioeng., 2008, 25(12): 1
[1] (廖海星, 何定凯, 张爱清等. 水溶性导电聚苯胺的制备及应用研究进展[J]. 化学与生物工程, 2008, 25(12): 1)
[2] Chen H, Ma H R, Guan J G.Preparation of water-soluble conducting polyanilines[J]. Prog. Chem., 2007, 19(11): 1770
[2] (陈卉, 马会茹, 官建国. 水溶性导电聚苯胺的制备[J]. 化学进展, 2007, 19(11): 1770)
[3] Negi Y S, Adhyapak P V.Development in polyaniline conducting polymers[J]. J. Macromol. Sci.-Polym. Rev., 2002, C42(1): 35
[4] Nabid M R, Zamiraei Z, Sedghi R.Cationic metalloporphyrins for synthesis of conducting water-soluble polyaniline[J]. React. Funct. Polym., 2009, 69(5): 319
[5] Hao H X, Liu R Q.Preparation and gas sensing property of water-soluble polyaniline/SmBaCu0.7Mn0.3O5+δ for NH3[J]. Electron. Compon. Mater., 2015, 34(1): 49
[5] (郝红霞, 刘瑞泉. 水溶性聚苯胺/SmBaCu0.7Mn0.3O5+δ材料的制备与氨敏性能研究[J]. 电子元件与材料, 2015, 34(1): 49)
[6] Zhang Y, LI X S, Wu G F.Performance of automobile antifreeze modified by water-soluble polyaniline[J]. China Plast. Ind., 2015, 43(4): 127
[6] (张媛, 李鑫晟, 吴广峰. 水溶性聚苯胺改性汽车防冻液的性能研究[J]. 塑料工业, 2015, 43(4): 127)
[7] Yue J, Epstein A J.Synthesis of self-doped conducting polyaniline[J]. J. Am. Chem. Soc., 1990, 112(7): 2800
[8] Chen S A, Hwang G W.Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film[J]. Macromolecules, 1996, 29(11): 3950
[9] Nguyen M T, Diaz A F.Water-soluble poly (aniline-co-o-anthranilic acid) copolymers[J]. Macromolecules, 1995, 28(9): 3411
[10] Ito S, Murata K, Teshima S, et al.Simple synthesis of water-soluble conducting polyaniline[J]. Syn. Met., 1998, 96(2): 161
[11] Lin H K, Chen S A.Synthesis of new water-soluble self-doped polyaniline[J]. Macromolecules, 2000, 33(22): 8117
[12] Hua M Y, Su Y N, Chen S A.Water-soluble self-acid-doped conducting polyaniline: Poly (aniline-co-n-propylbenzensulfo-nicacid-aniline)[J]. Polymer, 2000, 41(2): 813
[13] Mccarthy P A, Huang J, Yang S C, et al.Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites[J]. Langmuir, 2002, 18(1): 259
[14] Laska J, Widlarz J.Water soluble polyaniline[J]. Syn. Met., 2003, 135(2): 261
[15] Hino T, Namiki T, Kuramoto N.Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers[J]. Syn. Met., 2006, 156(21): 1327
[16] Bai L J, Chen J B.Production of water-soluble conducting polyaniline catalyzed by horseradish peroxidase[J]. Chem. Bioeng., 2011, 28(5): 13
[16] (白利杰, 陈建波. 辣根过氧化物酶催化合成水溶性导电聚苯胺的研究[J]. 化学生物与工程, 2011, 28(5): 13)
[17] Palaniappan S, Devi S L.Thermal stability and structure of electro active polyaniline-fluoroboric acid-dodecylhydrogensulfate salt[J].Polym. Degrad. Stabil., 2006, 91(10): 2415
[18] Rao P S, Subrahmanya S, Sathyanarayana D N.Inverse emulsion polymerization: A new route for the synthesis of conducting polyaniline[J]. Syn. Met., 2002, 128(3): 311
[19] Sun L, Liu H, Clark R, et al.Double-strand polyaniline[J]. Syn. Met., 1997, 84: 67
[20] Liu X X, Zeng X R.Synthesis and properties of polyaniline doped with poly (styrene sulfonic acid)[J]. J. Funct. Polym., 2003, 16(3): 309
[20] (刘学习, 曾幸荣. 聚苯乙烯磺酸掺杂聚苯胺的性能[J]. 功能高分子学报, 2003, 16(3): 309)
[21] Zheng J F, Zhao J H, Zhu Z P.Influence of the concentration of doping acid and oxidant on the conductivity of polyaniline nanofibers[J]. Mater. Rev., 2009, 23(3): 17
[21] (郑剑锋, 赵江红, 朱珍平. 掺杂酸和氧化剂的浓度对聚苯胺纳米线导电性的影响[J]. 材料导报, 2009, 23(3): 17)
[22] Lin W W, Nan J Y, Tian Y H, et al.XPS study of competing doping behavior of polyaniline[J]. Chem. Phys. Sin., 2000, 13(5): 592
[22] (林薇薇, 南军义, 田永辉等. XPS研究聚苯胺的竞争掺杂行为[J]. 化学物理学报, 2000, 13(5): 592)
[23] MacDiarmid A G, Epstein A J. Secondary doping in polyaniline[J]. Syn. Met., 1995, 88: 317
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[8] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[9] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[12] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[13] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[14] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
No Suggested Reading articles found!