Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 477-483    DOI: 10.11902/1005.4537.2019.004
Current Issue | Archive | Adv Search |
Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution
CHEN Xu1(),MA Jiong1,LI Xin1,WU Ming1,2,SONG Bo2
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
2. Offshore Oil Engineering Co. , Ltd. , Tianjin 300451, China
Download:  HTML  PDF(3219KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress corrosion cracking (SCC) behavior of X70 steel in an artificial sea mud solution containing SRB at different temperatures were studied by slow strain rate tensile tests. The results showed that SRB survived in the range of 20~40 ℃ in the artificial sea mud solution. The temperature has a great influence on the SRB activity. The activity and amount of SRB increased with the increase of temperature. The protectiveness of the biofilm formed on X70 steel surface was closely related with the activity and quantity of SRB. The amount of SRB was the least at 20 ℃, which resulted in the lowest SCC sensitivity of X70 steel in the simulated sea mud solution. At 30 ℃, corrosion galvanic cell with large ratio of cathode area to anode area could formed between the biofilm and the steel substrate, while the fracture of X70 steel was the mixed ductile-brittle fracture due to the action of anodic dissolution and hydrogen-induced cracking. The relatively complete biofilm formed on X70 steel at 40 ℃, in that case however, X70 steel exhibited the highest SCC sensitivity and the cracking mechanism was hydrogen induced cracking.

Key words:  X70 steel      artificial sea mud solution      temperature      sulfate-reducing bacteria      stress corrosion cracking     
Received:  08 January 2019     
ZTFLH:  TG174.36  
Fund: Supported by National Natural Science Foundation of China(51574147);Education Fund Item of Liaoning Province(L2017LZD004)
Corresponding Authors:  Xu CHEN     E-mail:  cx0402@sina.com

Cite this article: 

CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 477-483.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.004     OR     https://www.jcscp.org/EN/Y2019/V39/I6/477

Fig.1  Schematic diagrams of tensile specimen for SSRT (unit: mm)
Fig.2  Growth curves of SRB in the sea-mud simulation solution at different temperatures
Fig.3  Evolutions of Ecorrof X70 steel in the sea-mud simulation solution containing SRB at different temperatures
Fig.4  SSRT curves of X70 steel in the sea-mud simulation solution containing SRB at different temperatures
Fig.5  Elongation and reduction of area of X70 steel in the sea-mud simulation solution containing SRB at different temperatures
Fig.6  SEM images of fracture surfaces (a1~d1) and adjacent side surfaces (a2~d2) of X70 steel in air (a1, a2) and the sea mud simulated solution containing SRB at 20 ℃ (b1, b2), 30 ℃ (c1, c2) and 40 ℃ (d1, d2)
[1] Wu J H, Chen G Z. Corrosion protection of submarine pipeline—Lecture on pipeline corrosion and protection [J]. Pipeline Techn. Equip., 2000, (6): 35
[1] (吴建华, 陈光章. 海底管线的腐蚀保护——管道腐蚀与防护讲座之六 [J]. 管道技术与设备, 2000, (6): 35)
[2] Duan J Z, Ma S D, Huang Y L. Study on regional seabed sediment induced corrosion [J]. Corros. Sci. Prot. Technol., 2001, 13: 37
[2] (段继周, 马士德, 黄彦良. 区域性海底沉积物腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 37)
[3] Yu N, Gao J F, Zhang G A, et al. Corrosion behavior of carbon steel pipelines under different deposits in oil and gas transportation [J]. J. Univ. Sci. Technol. Beijing, 2015, (4): 461
[3] (喻能, 高继峰, 张国安等. 碳钢油气输送管道不同沉积物下的腐蚀行为 [J]. 工程科学学报, 2015, (4): 461)
[4] Fang B Y, Wang J Q, Zhu Z Y, et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions [J]. Acta Metall. Sin., 2001, 37: 453
[4] (方丙炎, 王俭秋, 朱自勇等. 埋地管道在近中性pH和高pH环境中的应力腐蚀开裂 [J]. 金属学报, 2001, 37: 453)
[5] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
[6] Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels [J]. Corros. Sci. Prot. Technol., 2009, 21: 62
[6] (张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展. 腐蚀科学与防护技术, 2009, 21: 62)
[7] Chen X, Wu M, He C, et al. Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution [J]. Acta Metall. Sin., 2010, 46: 951
[7] (陈旭, 吴明, 何川等. 外加电位对X80钢及其焊缝在库尔勒土壤 模拟溶液中SCC行为的影响 [J]. 金属学报, 2010, 46: 951)
[8] Wang S R, Du C W, Liu Z Y, et al. Field experimental study on stress corrosion cracking behavior of Q235 and X70 steels in Singapore soil [J]. J. Mech. Eng., 2015, 51(12): 30
[8] (王胜荣, 杜翠薇, 刘智勇等. Q235与X70钢在新加坡土壤中的应力腐蚀行为现场试验研究 [J]. 机械工程学报, 2015, 51(12): 30)
[9] Wang B Y, Huo L X, Wang D P, et al. Stress corrosion cracking of X80 pipeline steel in near-neutral pH values solutions [J]. J. Tianjin Univ., 2007, 40: 757
[9] (王炳英, 霍立兴, 王东坡等. X80管线钢在近中性pH溶液中的应力腐蚀开裂 [J]. 天津大学学报, 2007, 40: 757)
[10] Eslami A, Fang B, Kania R, et al. Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment [J]. Corros. Sci., 2010, 52: 3750
[11] Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[12] Little B, Staehle R, Davis R. Fungal influenced corrosion of post-tensioned cables [J]. Int. Biodeterior. Biodegrad., 2001, 47: 71
[13] Rao T S, Nair K V K. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater [J]. Corros. Sci., 1998, 40: 1821
[14] Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
[15] Wu T Q, Yan M C, Zeng D C, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria [J]. J. Mater. Sci. Technol., 2015, 31: 413
[16] Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2001, 26: 515
[17] Qian C R. Laboratory Experiments in Microbiology [M]. 2nd Ed. Beijing: Peking University Press, 2008
[17] (钱存柔. 微生物学实验教程 [M]. 第2版. 北京: 北京大学出版社, 2008)
[18] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
[19] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J]. Corros. Sci., 2009, 51: 1584
[20] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[21] Zhu R X, Na J Y, Guo S W, et al. Corrosion mechanism of sulfate-reducing bacteria [J]. J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2000, 1(3: 12
[21] (朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理 [J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 12)
[22] Chen X, Gao F J, Song W Q. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
[22] (陈旭, 高凤娇, 宋武琦. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103)
[23] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution [J]. Mater. Des., 2009, 30: 1712
[24] Song B Q, Chen X, Ma G Y, et al. Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution [J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
[24] (宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响 [J]. 材料热处理学报, 2016, 37(4): 122)
[25] Wu M, Chen X, He C, et al. Effect of CO2 partial pressure on SCC behavior of welded X80 pipeline in simulated soil solution [J]. Acta Metall. Sin. (Engl. Lett., 2011, 24: 65
[26] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[4] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[8] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[12] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[15] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
No Suggested Reading articles found!