Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 465-471    DOI: 10.11902/1005.4537.2013.203
Current Issue | Archive | Adv Search |
Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel
WU Jun1, WANG Xiujing1, LUO Rui1, ZHANG Sanping1(), ZHOU Jianlong2
1. Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2. Wuhan Twin Tigers Coatings Co., LTD, Wuhan 430035, China
Download:  HTML  PDF(6433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior for carbon steel Q235 and weathering steel 09CuPCrNi-A has been studied by alternative field exposure in a site of urban atmosphere and a site of petrochemical environment at Wuhan metropolis for 180 d and then the steel samples were examined by means of SEM, EDS, XRD and electrochemistry measurement. The results show that the surface of the rust layer is non-uniform with many cracks and pores for the steels exposed both in Wuhan urban atmosphere and Wuhan petrochemical environment; the rust layer formed in the early stage will have an impact on that in the later stage; and the changes in the environment will affect the evolution of the rust layer. The corrosion kinetics and polarization curve results show that the free corrosion current densities of the steels measured after exposure may exist a ranking as follows: Isuccessionally exposure in Wuhan urban atmosphere<Iexposure in Wuhan urban atmosphere/Wuhan petrochemical environment<Iexposure in Wuhan petrochemical environment/Wuhan urban atmosphere<Isuccessionally exposure in Wuhan petrochemical environment.

Key words:  Q235 carbon steel      09CuPCrNi-A weathering steel      atmospheric corrosion      electrochemistry     
ZTFLH:  TG174.4  

Cite this article: 

WU Jun, WANG Xiujing, LUO Rui, ZHANG Sanping, ZHOU Jianlong. Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 465-471.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.203     OR     https://www.jcscp.org/EN/Y2014/V34/I5/465

Fig.1  Micro-morphologies of Q235 steel (a1~d1) and 09CuPCrNi-A steel (a2~d2) exposed in the different atmospheres for 180 d: (a1, a2) Wuhan/180 d, (b1, b2) Wuhan/90 d→Petrochemical/90 d, (c1, c2) Petrochemical/90 d→Wuhan/90 d, (d1, d2) Petrochemical/180 d
Fig.2  Cross-sectional morphologies of Q235 steel (a1~d1) and 09CuPCrNi-A steel (a2~d2) exposed in the different atmospheres for 180 d: (a1, a2) Wuhan/180 d, (b1, b2) Wuhan/90 d→Petrochemical/90 d, (c1, c2) Petrochemical/90 d→Wuhan/90 d, (d1, d2) Petrochemical/180 d
Fig.3  Corrosion rates of Q235 steel (a) and 09CuPCrNi-A steel (b) exposed in the different atmospheres for 180 d
Fig.4  EDS analysis of Q235 steel (a, b) and 09CuPCrNi-A steel (c, d) exposed in the different atmospheres for 180 d: (a, c) Wuhan→Petrochemical (b, d) Petrochemical→Wuhan
Fig.5  XRD patterns of Q235 steel (a) and 09CuPCrNi-A steel (b) exposed in the different atmospheres for 180 d
Sampling site Q235 steel 09CuPCrNi-A steel
Ecorr / mVSCE Icorr/ μAcm-2 Ecorr / mVSCE Icorr / μAcm-2
Wu han (180 d) -592.952 105.4 -576.699 94.9
Wuhan (90 d)→Petrochemical (90 d) -558.834 128.4 -524.697 103.7
Petrochemical (90 d)→Wuhan (90 d) -585.754 165.3 -543.830 112.2
Petrochemical (180 d) -586.834 176.6 -531.746 118.2
Table1  Fitting results of polarization curves of Q235 steel and 09CuPCrNi-A steel exposed in the different atmospheres for 180 d
Fig.6  Polarization curves of Q235 steel (a) and 09CuPCrNi-A steel (b) exposed in the different atmospheres for 180 d
[1] Liu D X. Corrosin and Protection of Materials[M]. Xi'an: Northwestern Polytechnical Univetsity Press, 2010
(刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社,2010)
[2] Ke W. Current investigation into corrosion cost in china[J]. Total Corros. Control, 2003, 17(1): 1-10
(柯伟.中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17(1): 1-10)
[3] Li X G. Research progress and prospects of materials environmental corrosion[J]. Bull. Natl. Nat. Sci. Found. China, 2012, 5: 257-300
(李晓刚. 我国材料自然环境腐蚀研究进展与展望[J]. 中国科学基金, 2012, 5: 257-300)
[4] Guedes S C, Garbatov Y, Zayed A, et al.Influence of environmental factors on corrosion of ship structures in marine atmosphere[J]. Corros. Sci., 2009, 51: 2014-2026
[5] De la Fuente D, Díaz I, Simancas J, et al.Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53: 604-617
[6] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine,rural and industrial environments[J]. Corros.Sci., 1999, 41(9): 1687-1702
[7] Wang Z Y, Yu G C, Han W. A survey of the atmospheric corrosiveness of natural environments in china[J]. J. Chin. Soc. Corros. Prot., 2003, 24(8): 323-326
(王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 中国腐蚀与防护学报, 2003, 24(8): 323-326)
[8] Xiao Y D, Zhang S P, Cao X L, et al. Recent development in atmospheric corrosion study of materials in china[J]. Equip. Environ.Eng., 2005, 10(5): 3-7
(萧以德, 张三平, 曹献龙等. 我国大气腐蚀研究进展[J]. 装备环境工程, 2005, 10(5): 3-7)
[9] Cao C N. Environmental Corrosion of Mateials in China[M]. Beijing: Chemical Industry Press, 2005: 1-3
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社,2005: 1-3)
[10] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56(9): 935-941
[11] Nam N D, Kim M J, Jang Y W, et al. Effect of tin on the corrosion behavior of low-alloy steel in an acid chloride solution[J]. Corros. Sci., 2010, 52: 14-20
[12] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci.,2009, 51: 997-1006
[13] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel[J].Acta Metall. Sin., 2010, 46(11): 1365-1378
(柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究[J]. 金属学报, 2010, 46(11): 1365-1378)
[1] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[6] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[7] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[8] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[9] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[10] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[11] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!