Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 472-476    DOI: 10.11902/1005.4537.2014.171
Current Issue | Archive | Adv Search |
Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil
YAO Huiping1, YAN Maocheng2(), YANG Xu1, SUN Cheng2
1. Nanning Oil and Gas Branch, Petrochina Southwest Pipeline Company, Nanning 53000, China
2. National Engineering Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion of X80 pipeline steel in an acidic red soil slurry was studied by means of electrochemical impedance spectroscopy (EIS) and polarization technique. The results show that in a water-saturated red soil, the EIS of X80 steel contains a capacitive arc at high frequency and a capacitive arc from the interface process in frequency region of 10-2~104 Hz as well as an inductive loop appears at low frequency exhibiting processes related with adsorption or pitting nucleation; the electrode process was controlled by diffusion process after 30 d exposure; iron oxides residing in the soil tend to enhance the corrosion process of the steel, correspondingly a corrosion mechanism has been proposed.

Key words:  soil corrosion      pipeline steel      acidic soil      red soil     
ZTFLH:  TG174  

Cite this article: 

YAO Huiping, YAN Maocheng, YANG Xu, SUN Cheng. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 472-476.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.171     OR     https://www.jcscp.org/EN/Y2014/V34/I5/472

Fig.1  Metallurgical structure of X80 pipeline steel used in this work
Fig.2  Tafel plots of X80 pipeline steel after 1 and 60 d exposure in the acidic red soil
Fig.3  Nyquist plots of X80 pipeline steel after exposure for different time in water-saturated acidic red soil
Fig.4  Surface morphologies of X80 steel after 10 d (a) and 60 d (b) exposure in red soil
Fig.5  Equivalent circuit model for fitting EIS data of X80 steel in the red soil
Time d Rs
kΩcm2
Cs
10-10 Fcm-2
Rct
kΩcm2
Qdl
Y0 / S sncm-2 n
1 5.578 1.233 3.371 1.228×10-4 0.9778
5 5.365 0.828 4.052 1.415×10-4 0.8128
10 4.619 0.932 3.836 2.142×10-4 0.9458
15 3.854 3.825 3.763 3.069×10-4 0.8953
30 3.776 0.950 3.729 1.100×10-3 0.5009
45 3.605 1.181 5.729 1.660×10-3 0.4456
60 3.558 1.253 6.234 1.730×10-3 0.3957
Table 1  Fitted EIS parameters of X80 steel in the red soil slurry
Fig.6  Rs and Rct of X80 steel in the red soil as a function of the exposure time
[1] Cole I S, Marney D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, 56: 55-16
[2] Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309-317
[3] Li C, Du C W. Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 377-380
(李超, 杜翠薇.X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380)
[4] Yang S, Tang N, Yan M C, et al. Corrosion of X80 pipeline steel in acidic soils: Effect of Temperature[J]. J. Chin. Soc. Corros. Prot., Accepted
(杨霜, 唐囡, 闫茂成等. X80管线钢酸性土壤腐蚀行为: 温度的影响, 中国腐蚀与防护学报, 已接收)
[5] Zhang G Y. Q235 steel's corrosion morphology in red soil under different moisture conditions[J]. Chin. Agric. Sci. Bull., 2010, 26(20): 393-396
(章钢娅. Q235钢在不同湿度红壤中的腐蚀形貌研究[J]. 中国农学通报, 2010, 26(20): 393-396)
[6] Cao C N. Material Natural Environment Corrosion in China[M]. Beijing: Chemical Industry Press, 2005
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005)
[7] Yan M C, Wang J Q, Han E-H, et al. Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating[J]. Acta Metall. Sin., 2014, 50(9): 1137-1145
(闫茂成, 王俭秋, 韩恩厚等.埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145)
[8] Yan M C, Wang J Q, Han E-H, et al. Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corros. Sci., 2008, 50: 1331-1339
[9] Yan M C, Wang J Q, Ke W, et al.Effectiveness of cathodic protection under simulated disbonded coating on pipelines[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 257-262
(闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27: 257-262)
[10] Romanoff M. Underground Corrosion, National Bureau of Standards Circular 579, United States Departrment of Commerce, Washington DC, 1957
[11] Tan Y J.Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media[J]. Corros. Sci., 2011, 53: 1145-1155
[12] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246-253
[13] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[14] Cao C N. Introduction of Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002
(曹楚南. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[15] Li J Y, Xu R K. Inhibition of acidification of kaolinite and an Alfisol by aluminum oxides through electrical double-layer interaction and coating[J]. Eur. J. Soil Sci., 2013, 64(1): 110-120
[16] Ismail A I M, El-Shamy A M. Engineering behaviour of soil materials on the corrosion of mild steel[J]. Appl. Clay Sci., 2009, 42: 356-362
[1] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[10] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[11] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[12] Shuaixing WANG,Nan DU,Daoxin LIU,Jinhua XIAO,Danping DENG. Corrosion Kinetics and the Relevance Analysis for X80 Steel in a Simulated Acidic Soil Solution and Outdoor Red Soil[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[13] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[14] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
No Suggested Reading articles found!