|
|
Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel |
LIU Zuojia1, CHENG Xuequn1, LI Xiaogang1, LIU Xiaohui2 |
1. Corrosion and Protection Centre of University of Science and Technology Beijing, Beijing 100083, China; 2. China Petroleum & Chemical Corporation, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 266071, China |
|
|
Abstract The corrosion behavior of 2205 duplex stainless steel in 0.1%, 1.0% and 3.5% (mass%) NaCl solution by electrochemical measurements was investigated, respectively. The experimental analysis based on PDM (point defect model) shows that the pitting corrosion resistance of the material tends to be worse with the increasing of concentration of NaCl solution. When the passive film forms, oxygen ion vacancy is produced on metal/film interface and consumed on film/solution interface, however metal ion vacancy exists on film/solution interface and being consumed on metal/film interface. Migration of oxygen ion vacancy causes the growth of the passive film but it also destroys the film simultaneously. In addition, on the basis of PDM theory, a dissolution model of passive film has been established. The model explains that the passive film of 2205DSS on austenite γ phase probably dissolves faster than on ferrite α phase in the simulated marine environment.
|
|
|
[1] Yand D J, Shen Z S. Corrosion Fundamental of Metals [M]. Beijing: Metallurgical Industry Press, 2003 (杨德钧, 沈卓身. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 2003) [2] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 10: 369-380 [3] Wagner C. Formation of composite sacles consisting of oxidation of different metals [J]. J. Electrochem. Soc., 1956, 11: 627-633 [4] Wagner C. Oxidation of involving noble metals [J]. J. Electrochem. Soc., 1952, 10: 571-580 [5] MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139(12): 3434-3449 [6] Mackintosh W D, Plattner H H. The identification of the mobile ion during the anodic oxidation of silicon [J]. J. Electrochem. Soc., 1977, 124(3): 396-400 [7] Fattach-alhosseini A, Alemi M H, Banaei S. An Electrochemical impedance study of AISI 321 stainless steel in 0.5 M H2SO4 [J]. Int. J. Electrochem., 2011, 2011: 1-9 [8] Sikora J, Sikora E, MacDonald D D. The electronic structure of the passive film on tungsten [J]. Electrochem. Acta., 2000, 45(12): 1875-1883 [9] Fu Y, Lin C J, Cai W D. A study of the selective dissolution behavior of duplex stainless steel by micro-electrochemical technique [J]. Acta Metall. Sin., 2005, 41(3): 302-306 (付燕, 林昌健, 蔡文达. 微电化学技术研究双相不锈钢优选腐蚀行为 [J]. 金属学报, 2005, 41(3): 302-306) [10] Cardoso M V, Amaral S T, Martini E M A. Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium [J]. Corros. Sci., 2008, 50 (9): 2429-2436 [11] Nicic I, MacDonald D D. The passivity of type 316L stainless steel in borate buffer solution [J]. J. Nuclear Mater., 2008, 379: 54-58 [12] Cao C N, Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004 (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 科学出版社, 2004) [13] Okmoto G, Shibata T. Stability of passive stainless steel in relation to the potential of passivation treatment [J]. Corros. Sci., 1970, 10(5): 371-378 [14] Sun W, E L H. The measurement for AC impedance of differential capacity of electrode [J]. J. Fushun Petroleum Inst., 2000, 20(2): 18-22 (孙伟, 鄂利海. 电极微分电容的交流阻抗测量方法 [J]. 抚顺石油学报, 2000, 20(2): 18-22) [15] Sikora E, MacDonald D.D. Defining the passive state [J]. Solid State Ionics., 1997, 94(1-4): 141-150 [16] Sikora E, Sikora J, MacDonald D D. A new method for estimating the diffusivities of vacancies in passive films [J]. Electrochim. Acta, 1996, 41(6): 783-789 [17] MacDonald D D, Biaggio S, Song H. Steady-state passive films-interfacial kinetic effects and diagnostic-criteria [J]. J. Electrochem. Soc., 1992, 139: 170-176 [18] Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 276-277 (刘佐嘉, 程学群, 刘小辉等. 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报, 2010, 30(4): 276-277 [19] Zhang S H, Tan Y, Liang K X. In-situ impedance investigation of 304 stainless steel between pit growth and repassivation state [J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 130-134 (张胜寒, 檀玉, 梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究 [J]. 中国腐蚀与防护学报, 2011, 31(2): 130-134) [20] Liu Z J, Cheng X Q, Li X G. The influence of pH on type 316L stainless steel in simulated circulating cooling water [J]. NACE Int. Mater. Performance, 2010, 49(12): 64-68
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|