Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 29-35    DOI:
Current Issue | Archive | Adv Search |
Research of Corrosion Behavior of Thermal Spraying Zn-Ni Composite Coating in Seawater
WANG Yingfa1, 2, HUANG Guosheng2, CHENG Xudong1, LI Xiangbo2, XING Lukuo2, GUO Juan2, 3, MA Yan4
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
2. Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute(LSRMI), Qingdao 266101, China;
3. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
4. Sunrui Marine Environment Engineering Co., Ltd, Qingdao 266101, China;
Download:  PDF(7561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the corrosion resistance of coating and prolong its life in the marine environment. Zn-Ni composite coatings including different nickel content were prepared by oxyacetylene flame spraying process, with Zn-Ni composite powders which were prepared by spray-dried process. The protection performance and corrosion mechanism of the Zn-Ni composite coatings in seawater were tested by means of potentiodynamic polarization and electrochemical impedance, and with the analysis of SEM, EDS and XRD. Results shown that the stable corrosive potential of the coatings finally ranges from -0.98 V to -0.95 V. The presence of nickel can play a role that restrain the dense Zn(OH)2 to be converted into the loose ZnO. At the same time, the coatings resistance Rc and charge transfer resistance Rt are both being increased and causing the coatings corrosion current being decreased gradually with the accumulation of corrosion products. Corrosion resistances of these coatings with different nickel content are obviously different, and the anti-corrosion properties of the coating with 20 mass% Ni is best.

Key words:  oxyacetylene flame spraying      Zn-Ni composite coating      potentiodynamic polarization      electrochemical impedance      corrosion resistance     
ZTFLH:  TG174.44  

Cite this article: 

WANG Yingfa,HUANG Guosheng,CHENG Xudong,LI Xiangbo,XING Lukuo,GUO Juan,MA Yan. Research of Corrosion Behavior of Thermal Spraying Zn-Ni Composite Coating in Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 29-35.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/29

[1] Xiao Z A, Fei X M, Zou Y J. Research of corrosion resistance of zinc-nickel alloy plating [J]. Mater. Prot., 2005, 38(3): 15-17
(肖作安,费锡明,邹勇进. 锌镍合金镀层耐腐蚀性的研究 [J]. 材料保护, 2005, 38(3): 15-17)
[2] Huang M L, Huang Q M, Li W S. Investigations on corrosion resistance of plated Zn-Fe alloys and their passive films [D]. Guangzhou: South China Normal University, 2010
(黄美玲,黄启明,李伟善. Zn-Fe合金镀层及其钝化膜耐蚀性研究 [D]. 广州: 华南师范大学, 2010)
[3] Cao C, Lu D S. Influence of doping vanadium, molybdenum and yttrium on resistive corrosion of Zn-Fe alloy coating [D]. Hefei: Hefei University of Technology, 2007
(曹超,鲁道宋. 钒、钼、钇掺杂对锌铁合金镀层耐蚀性能的影响 [D]. 合肥: 合肥工业大学, 2007)
[4] Gui Y, Xu Q Y. Electrochemical behavior of hot-dip zinc-titanium alloy galvanized steel sheet [J]. Electroplat. Finish., 2009, 28(3): 21-23
(桂艳,许乔瑜. 热浸锌-钛合金镀层钢板的电化学行为 [J]. 电镀与涂饰, 2009, 28(3): 21-23)
[5] Pang X Z, Xu Z B, Li Y T, et al. Progress on the corrosion research of high aluminum Zn-based alloy [J]. Foundry Technol., 2011, 32(6): 887-891
(庞兴志,许征兵,李逸泰等. 高铝锌基合金的腐蚀研究进展 [J]. 铸造技术, 2011, 32(6): 887-891)
[6] Zhang Y J, Dong P, Fan Y Y. Development of deposition mechanism and corrosion mechanism of zinc-nickel alloy coatings [J]. Mater. Prot., 2007, 40(11): 45-48
(张英杰,董鹏,范云鹰. Zn-Ni合金镀层沉积机理及腐蚀机理研究进展 [J]. 材料保护, 2007, 40(11): 45-48)
[7] Ren J, Yang D H, Wu X. Performance and anti-corrosive mechanism of electroplated Zn-Ni alloy coating [J]. Mater. Prot., 2008, 41(1): 9-12
(任婕,杨道合,吴熙. 锌-镍合金电镀层性能及耐腐蚀机理研究 [J]. 材料保护, 2008, 41(1): 9-12)
[8] Xu A Z, Hu W B, Shen B, et al. Research development of anticorrosive mechanism of Zn-Ni alloy coatings [J]. Electroplat. Poll. Contr., 2000, 20(3): 1-5
(许爱忠,胡文彬,沈斌等. 锌-镍合金镀层耐蚀机理研究进展 [J]. 电镀与环保, 2000, 20(3): 1-5)
[9] Tian W, Xie F Q, Wu X Q. Effect of Ni content on corrosion resistance of electroplated coatings of Zn-Ni alloys [J]. Corros. Sci. Prot.Technol., 2008, 20(4): 272-274
(田伟,谢发勤,吴向清. Ni含量对Zn-Ni合金镀层的耐蚀性影响 [J]. 腐蚀科学与防护技术, 2008, 20(4): 272-274)
[10] Quan H Y, Liu Z H, Wang Y. Zn-Ni alloy used as thermal spraying coating material for corrosion protection [J]. Mater. Prot., 2000, 22(3): 47-48
(全红烨,刘泽昊,王岳. ZnNi合金用作热喷涂防腐蚀涂层材料[J]. 材料保护, 2000, 22(3): 47-48)
[11] Zhang Q, Cheng X D. Preparation and properties of the low electrode potential of zinc-nickel alloy coating [D]. Wuhan: Wuhan University of Technology, 2010
(张琦,程旭东. 低电极电位锌镍合金涂层的制备与性能研究 [D]. 武汉: 武汉理工大学, 2010)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
No Suggested Reading articles found!