Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 10-16    DOI:
Current Issue | Archive | Adv Search |
Research and Development of Cathodic Protection for Steels in Deep Seawater
LI Chengjie, DU Min
The Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering ,Ocean University of China, Qingdao 266100, China
Download:  PDF(7170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of dissolved oxygen, temperature, pH, carbonate and pressure in deep seawater on the cathodic protection of steel materials and the formation of calcareous deposits were reviewed. Meanwhile, overseas and domestic research status on the cathodic protection for steel materials in deep seawater was summarized. Furthermore, the parameters of the deep seawater cathodic protection design were introduced. It was proposed that it was an important measure to increase the initial current density for deep seawater cathodic protection and also with the coating. Finally, the inadequacies of the research currently on the deep seawater cathodic protection and the development direction were discussed.

Key words:  deep seawater      steel materials      cathodic protection      current density      hydrogen embrittlement      coating     
ZTFLH:  TG174.41  

Cite this article: 

LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 10-16.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/10

[1] Li R P, Xie Y H, Shu Z. A review on the technical development of deep water offshore platform [J]. China Offshore Platform, 2003, 18(3): 1-5
(李润培, 谢永和, 舒志. 深海平台技术的研究现状与发展趋势[J]. 中国海洋平台, 2003, 18(3): 1-5)
[2] NACE Standard RP0176-2003, Corrosion control of steel fixed offshore structures associated with petroleum production [S].
[3] Recommended Reactive DNV-RP-B401, Cathodic protection design [S].
[4] Fischer K P. Deep water: considerations of the cathodic protection design basis [A]. Offshore Technology Conference [C]. Houston: 1999
[5] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 6-9
(侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 6-9)
[6] Cao Z Y. Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010
(曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010)
[7] Wen G M, Zheng F Y. Calcareous deposits formation and application of cathodic protection in seawater [J]. Corros. Prot., 1995, 16(1): 14-19
(温国谋, 郑辅养. 海水中阴极保护时钙质沉积层的形成及其应用 [J]. 腐蚀与防护, 1995, 16(1): 50-53)
[8] Goolsby A D, Smith J D. Auger tension leg platform cathodic protection system [J]. Mater. Perform., 1996, 35(4): 12-17
[9] Lin S, Dexter S C. Effects of temperature and magnesium ions on calcareous deposition [J]. Corros. Sci., 1988, 44(9): 615-622
[10] Mantel K E, Hartt W H, Chen T. Substrate, surface finish, and flow rate influences on calcareous deposit structure [J]. Corrosion, 1992, 48(6): 489-500
[11] Barchiche C, Deslouis C, Festy D, et al. Characterization of calcareous deposits in artificial seawater by impedance techniques: 3-Deposit of CaCO3 in the presence of Mg (II) [J]. Electrochim. Acta, 2003, 48: 1645-1654
[12] Deslouis C, Festy D, Gil O, et al. Characterization of calcareous deposits in artificial sea water by impedance techniques—2. Deposit of Mg(OH)2 without CaCO3 [J]. Electrochim. Acta, 2000, 45(12-13): 1837-1845
[13] Brown B F, Foreson B W, Lennos T J, et al. Marine corrosion studies: stress corrosion cracking, deep ocean technology, cathodic protection, corrosion fatigue [A]. Third interim report of progress [C]. US: US Naval Research Laboratory, 1965
[14] Fischer K P, Finnegan J E. Cathodic polarization behavior of steel in seawater and the protective properties of the calcareous deposits [A]. Corrosion/89 [C]. Houston: NACE, 1989
[15] MacKay W B. Deep water testing of sacrificial anodes part 2 [A].Corrosion/75 [C]. Houston, 1975
[16] England H R, Heidersbach R H. The effects of water depth on cathodic protection [A]. Corrosion/82 [C]. Houston: NACE, 1982
[17] England H R, Heidersbach R H. Deep water effects on cathodic protection [A]. 14th Annual Offshore Technology Conference [C]. Houston: NACE 1982
[18] Tawns A, Stena C, Limited O, et al. Cathodic protection at a simulated depth of 2500 m [A]. Corrosion2000 [C]. Orlando, Fl: NACE, 2000
[19] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. Chin., 2011, 41(7/8): 149-153
(李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报, 2011, 41(7/8): 149-153)
[20] Fischer K P, Sydberger T, Lye R. Field testing of deep water cathodic protection on the Norwegian Continental Shelf [J]. Mater. Perform., 1988, 27(1): 49-56
[21] Finegan J E, Fischer K P. Calcareous deposits: calcium and magnesium ion concentrations [A]. Corrosion/89 [C]. Houston: NACE, 1989
[22] Chen S, Hartt W H. Deepwater cathodic protection. Part 1: laboratory simulation experiments [J]. Corrosion, 2002, 58(1): 38-48
[23] Goolsby A D, Wolfoson S L. Extended cathodic protection monitoring of one of the world's deepest fixed offshore platforms-Bullwinkle [A]. Corrosion/98 [C]. Houston: NACE, 1998
[24] Fischer K P, Espelid B, Veritas D N. A review of cp current demand and anode performance for deepwater [A]. Corrosion 2001 [C]. Houston: NACE, 2001
[25] Chen S, Hartt W H, Wolfson S. Deep water cathodic protection. Part 2: field deployment results [J]. Corrosion, 2003, 59(8): 721-732
[26] Fischer K P, Sydberger T. In-situ testing of cathodic protection on the Northern Norwegian Continental Shelf [A]. Corrosin/84 [C]. Houston: NACE, 1984
[27] Fischer K P. Field testing of CP current requirements at depths down to 1300 m on the Norwegian Continental Shelf from 63 to 67°N [A]. Corrosion/99 [C]. Houston: NACE, 1999
[28] Fischer K P, Thomason W H, Eliassen S. CP in deep water: The importance of calcareous deposits and the environmental conditions [A]. Corrosion/96 [C]. Houston: NACE, 1996
[29] Zuo J Y. Stress Corrosion Cracking [M]. Xi'an: Xi'an Jiaotong Universtiy Press,1985
(左景伊. 应力腐蚀破裂 [M]. 西安: 西安交通大学出版社, 1985)
[30] ISO.155892-2-2002, Petroleum and natural gas industries- Cathodic protection of pipeline transportation systems. Part 2: Offshore pipelines [S].
[31] EN.12954-2001, Cathodic protection of buried or immersed metallic structures- General principles and application for pipelines [S].
[32] NACE. SP0169- 2007, Standard practice- control of external corrosion on underground submerged metellic piping systems[S].
[33] Zhang T, Sun X L, Chen J S, et al. Role of hydrogen in stress corrosion cracking of high strength pipeline steel [J]. Pipeline Technique Equip., 2004, (2): 33-35
(张涛, 孙欣岭, 陈居术等. 氢在高强度管道钢应力腐蚀中的作用 [J]. 管道技术与设备, 2004, (2): 33-35)
[34] Hansung K, Popov B N, Chen K S. Comparison of corrosion-resistance and hydrogen permeation properties of Zn-Ni, Zn-Ni-Cd and Cd coatings on low-carbon steel [J]. Corros. Sci., 2003, 45(47): 1505-1521
[35] Shu D L. Mechanical Properties of Engineering Materials [M]. Beijing: Mechanical Industry Press, 2003
(束德林. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2003)
[36] Zhang L. Study on the cathodic protection process and susceptibility of hydrogen embrittlement of X70 steel in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2011
(张林. 模拟深海环境X70钢阴极保护过程及其氢脆敏感性研究 [D]. 青岛: 中国海洋大学, 2011)
[37] Festy D. Cathodic protection of steel in deep sea: Hydrogen embrittlement risk and cathodic protection criteria [A]. Corrosion/2001 [C]. Houston: NACE, 2001
[38] Fairhurst D. Offshore cathodic protection: what we have learnt [J]. J. Corros. Sci. Eng., 2003, 4(6): 1-17
[39] Britton J N. External corrosion control and corrosion inspection of deepwater pipelines [A]. The 2nd International Deepwater Pipeline Technology Conference [C]. New Orleans: 1999
[40] Britton J N. Cathodic protection design in deep water, be safe not sorry [A]. Corrosion/99 [C]. San Antonio: NACE, 1999
[41] Liu X J. Anticorrosion coating technology and its progress in ocean environment[J]. Modern Paint Finish., 2010, 13(4): 20-22
(刘晓建. 海洋环境中的防腐蚀涂层技术及发展 [J]. 现代涂料与涂装, 2010, 13(4): 20-22)
[42] Wolfson S L. Corrosion control of subsea piping systems using thermal sprayed aluminum coatings [J]. Mater. Perform., 1996, 35(7): 32-36
[43] Du Y X, Zhang G Z, Li J. Numerical calculation of cathodic protection potential distribution [J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 53-58
(杜艳霞, 张国忠, 李健. 阴极保护电位分布的数值计算 [J]. 中国腐蚀与防护学报, 2008, 28(1): 53-58)
[44] Wang A P, Du M, Lu C S, et al. Finite element method for an offshore platform with complex nodes with a cathodic protection system [J]. Period. Ocean Univ. Chin., 2007, 37(1):129-134
(王爱萍, 杜敏, 陆长山等. 海洋平台复杂节点阴极保护电位分布的有限元法计算 [J]. 中国海洋大学学报, 2007, 37(1): 129-134)
[45] Wang X T, Hou B R,Li Y. Boundary element method for the cathodic protection in sea mud [J]. Marine Sci., 2006, 30(12): 2-4
(王秀通, 侯保荣, 李焰. 海泥环境中阴极保护的边界元计算 [J]. 海洋科学, 2006, 30(12): 2-4)
[46] Santiago J, Telles J C F. A solution technique for cathodic protection with dynamic boundary conditions by the boundary element method [J]. Adv. Eng. Software, 1999, 30: 663-671
[47] Montoya R, Galván J C, Genesca J. Using the right side of Poisson's equation to save on numerical calculations in FEM simulation of electrochemical systems [J]. Corros. Sci., 2011, 53(5): 1806-1812
[48] Chen G Z, Wang H R. Cathodic protection and anti-corrosion technology for marine structure [J]. Corros. Prot., 2008, 29(z1): 14-19
(陈光章, 王洪仁. 海洋结构中的阴极保护防腐蚀技术 [J]. 腐蚀与防护, 2008, 29(z1): 14-19)
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[7] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[8] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[10] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[11] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[12] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[13] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[14] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
No Suggested Reading articles found!