Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (6): 453-456    DOI:
Research Articles Current Issue | Archive | Adv Search |
907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM
DUAN Dongxia1,2, CHEN Xiguang1, LIN Cunguo2
1. College of Marine Science, Ocean University of China, Qingdao 266003
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101
Download:  PDF(1574KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Biofilm is one of the main factors that influence metal corrosion. According to the structure and property of biofilm, the compound of natural biopolymer agar and SRB cells were deposited on 907A surface. Artificial biofilm was produced. The dissolved oxygen concentration in artificial biofilm was studied by microsensors. Environmental scanning electron microscopy (ESEM) and energy dispersive X-ray detector (EDAX) were used to study 907A corrosion under artificial biofilm. The result indicated that the oxygen concentration became lower and lower with the distance between metal surface and test location becoming small. The corrosion morphology and corrosion products of 907A were influenced by environment.
Key words:  sulfate reducing bacteria      biofilm      microbiologically influenced corrosion      microsensor     
Received:  16 August 2010     
ZTFLH: 

TG172.5

 
Corresponding Authors:  DUAN Dongxia     E-mail:  duandx@sunrui.net

Cite this article: 

DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM. J Chin Soc Corr Pro, 2011, 31(6): 453-456.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I6/453

[1] Angell P. Understanding microbially influenced corrosion as biofilm-medited changes in surface chemistry[J]. Curr. Opin. Biotechnol., 1999, 10(3): 269-272

[2] Duan J Z, Wu S Z, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J].Electrochim. Acta, 2008,54(1): 22-28

[3] Li F S, An M Z, Liu G Z, et al. Roles of sulfur-containing metabolites by SRB in accelerating corrosion of carbon steel[J].Chin. J. Inorg. Chem., 2008, 25(1): 13-18

    (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用[J]. 无机化学学报, 2008, 25(1): 13-18)

[4] Li F S, An M Z, Liu G Z, et al. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels[J]. Mater. Chem. Phys., 2009,113(2-3): 971-976

[5] Ismai K M, Jayaraman A, Wood T K, et al. The influence of bacteria on the passive film stability of 304 stainless steel [J].Electrochim. Acta, 1999, 44(26): 4685-4692

[6] Liu J H, Liang X, Li S M. Study of microbiologically induced corrosion action on Al-6Mg-Zr and Al-6Mg-Zr-Sc[J]. J. Rare Earth, 2007, 25(5): 609-614

[7] Zheng Q, Li J, Du Y L, et al. Influence of sulfate reducing bacteria on corrosion behavior of HSn70-10A alloy[J]. J.Chin. Soc. Corros. Prot., 2008,28(1): 38-43

     (郑强, 李进,杜一立等. 硫酸盐还原菌对HSn70-1A铜合金电化学腐蚀行为的影响[J].中国腐蚀与防护学报, 2008, 28(1): 38-43)

[8] Kuhl M, Steuckart C, Eicker G, et al. A H2S microsensor for profiling biofilms and sediments: application inanacidic lake sediment[J]. Aquat Microb Ecol., 1998,15: 201-209

[9] Yu T, de la Rosa C, Lu R. Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions[J]. Water Sci. Technol., 2004, 49(11-12): 353-358

[10] Xiang J, Sun Z, Xia J X, et al. Formation and characteristic of acinetobacter baumannii bacterial biofilm oninner surfaces of endotracheal tubes of burn patients[J]. J. Shanghai Jiaotong Univ., 2010, 30(5): 562-565

     (向军, 孙珍, 夏俊星等.烧伤患者气管管套内鲍曼不动杆菌生物膜形成及特征研究[J].上海交通大学学报, 2010, 30(5): 562-565)

[11] Miyanaga K, Terashi R, Kawai H, et al. Biocidal effect of cathodic protection on bacterial viability inbiofilm attached to carbon steel[J]. Biotechnol. Bioeng., 2007, 97: 850-857

[12] Wang Q F, Sui J, Su R X, et al. Study on steel corrosion in simulated biofilm environment in seawater[J]. J. Electronchem.,1999, 5(1): 55-58

     (王庆飞, 隋静, 苏润西等.模拟生物膜方法研究钢在海水中的腐蚀行为[J]. 电化学, 1999, 5(1):55-58)

[13] Zhao X D, Duan J Z, Wu S R, et al. Formation and transformation of surface corrosion products of Q235 steel influenced by sulfate-reducing bacteria in seawater[J]. J. Chin.Soc. Corros. Prot., 2008, 28: 299-302

     (赵晓栋, 段继周,武素茹等. 海水中硫酸盐还原菌作用下Q235钢表面腐蚀产物的形成和转化[J].中国腐蚀与防护学报, 2008, 28: 299-302
[1] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[4] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[5] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[6] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[7] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[8] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[9] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[10] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[11] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[12] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[13] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[14] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[15] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
No Suggested Reading articles found!