Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (4): 359-365    DOI: 10.11902/1005.4537.2013.160
Current Issue | Archive | Adv Search |
Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater
NIE Yuanyuan1, DUAN Jizhou2, DU Min1, HOU Baorong2
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; 2. Key Laboratory of Marine Environmental Corrosion and Biological Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Download:  HTML  PDF(1270KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of sodium azide NaN3 on cathodic oxygen reduction induced by microbe-assisted catalysis on the surface of 316LSS in seawater was studied in order to reveal the possible use of sodium azide (NaN3) as an agent to inhibit the activity of cytochrome c oxidase in microbial respiration. For such action, the adopted critical concentration of NaN3 was evaluated by fluorescence microscopic technology, and cyclic voltammograms and AC impedance were used to study the variations of electrochemical properties of the electrodes in seawater aerated with oxygen and nitrogen atmosphere respectively. Results showed that biofilm on the surface of the stainless steel could increase the intensity of reduction peak current density; however, it decreased obviously when stainless steel samples were disposed with NaN3, meanwhile, the peak potentials shifted negatively. According to the results of AC impedance, microbial respiration could directly promote the transfer of electrons to the final electron acceptor (oxygen); simultaneously reduce the tendency to corrosion of the stainless steel. It was suggested that the microbial adhesion on 316L stainless steel could change the traditional way of electron transfer of cathodic oxygen reduction in natural seawater, accelerating the transfer of electron to oxygen and finally catalyzing the reduction of oxygen.
Key words:  seawater      316L stainless steel      NaN      biofilm      cytochrome c oxidase      oxygen reduction     
Received:  18 September 2013     
ZTFLH:  TG172.5  

Cite this article: 

NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 359-365.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.160     OR     https://www.jcscp.org/EN/Y2014/V34/I4/359

[1] Wang Q Z, Du M. Marine Corrosion and Protection Technology [M]. Qingdao: Ocean University of Qingdao Press, 2001 (王庆璋, 杜敏. 海洋腐蚀与防护技术 [M]. 青岛: 青岛海洋大学出版社, 2001)
[2] Sun R, Zhang D, Zhang S T, et al. Research development on cathodic oxygen reduction on steel in seawater [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 58-61 (孙蓉, 张盾, 张胜涛等. 钢铁材料在海水中阴极氧还原反应研究进展 [J]. 腐蚀科学与防护技术, 2009, 21(1): 58-61)
[3] Erable B, Vandecandelaere I, Faimali M, et al. Marine aerobic biofilm as biocathode catalyst [J]. Bioelectrochemistry, 2010, 78(1): 52-
[4] Bergel A, Feron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm [J]. Electrochem. Commun., 2005, 7(9): 900-904
[5] Scotto V, Cintio R D, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour [J]. Corros. Sci., 1985, 25: 185-194
[6] Xu F L. The foundational investigation of the marine electro-active biofilms and the application in the microorganism fuel cells [D]. Qingdao: Institute of Oceanology of the Chinese Academy of Sciences, 2009 (许凤玲. 海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究 [D]. 青岛: 中国科学院海洋研究所, 2009)
[7] Johnsen R, Bardal E. Cathodic properties of different stainless steel in natural seawater [J]. Corrosion, 1985, 41(5): 296-302
[8] Molica A, Trevis A. Correlation between the formation of a primary film and the modification of the cathodic surface steel in seawater [A]. Proc. 4th Int. Cong. Marine Corros. Foul. [C]. Antibes, 1976: 351
[9] Iken H, Etcheverry L, Bergel A, et al. Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: a new approach to the study of biocorrosion [J]. Electrochim. Acta, 2008, 54(1): 60-65
[10] Cournet A, Berge M, Roques C, et al. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa [J]. Electrochim. Acta, 2010, 55(17): 4902-4908
[11] Faimali M, Chelossi E, Garaventa F, et al. Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater [J]. Electrochim. Acta, 2008, 54(1): 148-153
[12] Scotto V, Alabiso G, Marcenaro G. An example of microbiologically influenced corrosion-the behavior of atainless-steels in natural seawater [J]. Bioelectroch. Bioener., 1986, 16(2): 347-355
[13] Mollica A. Biofilm and corrosion on active passive alloys in seawater [J]. Int. Biodeter. Biodegr., 1992, 29(3/4): 213-229
[14] Cournet A, Delia M L, Bergel A, et al. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive [J]. Electrochem. Commun., 2010, 12(4): 505-508
[15] Dexter S C, Gao G Y. Effect of seawater biofilms corrosion potential and oxygen reduction of stainless steel [J]. Corrosion, 1988, 44(10): 717-723
[16] Lai M E, Bergel A. Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase [J]. Electroanal. Chem., 2000, 494(1): 30-40
[17] Scotto V, Lai M E. The ennoblement of stainless steel in seawater: a likely explanation coming from the field [J]. Corros. Sci., 1998, 40: 1007-1018
[18] Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Current. Opinion. Biotechnol., 2004, 15: 181-183
[19] Potekhina J S, Sherisheva N G, Povetkina L P, et al. Role of microorganisms in corrosion inhibition of metals in aquatic habitats [J]. Appl. Microbiol. Biotechnol., 1999, 52: 639-646
[20] Wang J Y, Zhu S G, Xu C F, et al. Biochemistry [M]. Beijing: Higher Education Press, 2008 (王镜岩, 朱圣庚, 徐长法等. 生物化学 [M]. 北京: 高等教育出版社, 2008)
[21] Pires L, Sachsenheimer K, Kleintschek T, et al. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor [J]. Biosens. Bioelectron., 2013, 47: 157-163
[22] Xiong C, Guo H L, Chen X Y, et al. The application of optical and fluorescent microscope in detection of cell apoptosis [J]. J. Tongji Med. Univ., 1998, 16(2): 68-72 (熊琛, 郭怀兰, 陈绪云等. 光学及荧光显微镜在细胞凋亡检测中的应用 [J]. 同济医科大学学报, 1998, 16(2): 68-72)
[23] Liu B, Duan J Z, Hou B R. Microbiology influenced corrosion of 316LSS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53 (刘彬, 段继周, 侯保荣. 天然海水微生物膜对316L不锈钢腐蚀行研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[24] Bonnel A, Dabosi F, Deslouis C. et al. Corrosion study of a carbon steel in neutral chloride solutions by impedance techniques [J]. Electrochem. Soc., 1983, 130(4): 753-756
[25] Wang J, Li X B, Wang W. The effect of microorganism attachment on the open-circuit-potential of passive metals in seawater [J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 262-266 (王佳, 李相波, 王伟. 海水环境中微生物附着对钝性金属开路电位的影响 [J]. 中国腐蚀与防护学报, 2004, 24(5): 262-266)
[1] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] BAI Pengkai, XU Ping. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[8] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[9] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[10] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[12] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[13] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[15] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
No Suggested Reading articles found!