Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 156-162    DOI: 10.11902/1005.4537.2014.043
Current Issue | Archive | Adv Search |
Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria
ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang()
Institute of Materials and Environmental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(1826KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition behavior of imidazoline on carbon steel in CO2-saturated artificial sewages with sulfate reduction bacteria (SRB) was investigated by weight loss method, 3D microscope and electrochemical methods. The concentrations of imidazoline were measured by UV-visible spectrophotometer,then the breeding of SRB was studied by measuring the amount of bacteria and the molecular structure of residual materials of imidazoline was characterized by FTIR. The results showed that: imidazoline could inhibit the breeding of SRB and imidazoline exhibited rather high inhibition efficiency in the artificial sewages without and with SRB after 10 d of incubation, correspondingly the contents of imidazoline were reduced to 87.5% and 86.5% for the two cases. The FTIR showed that characteristic peaks of pentacyclic compounds in the infrared spectra of the imidazoline residue could be observed, which implied that the functional groups of imidazoline were not destroyed by SRB during the corrosion process. Therefore, the imidazoline could act as inhibitor in the presence of the SRB for long term.

Key words:  imidazoline      sulfate reducing bacteria      CO2     
Received:  18 April 2014     
ZTFLH:  O646  

Cite this article: 

ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 156-162.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.043     OR     https://www.jcscp.org/EN/Y2015/V35/I2/156

Fig.1  Amount of SRB in the medium containing imidazoline
Fig.2  Nyquist (a) and polarization curves (b) of 20 # carbon steel in simulating water containing CO2-saturated and SRB with different concentrations of imidazoline
C / mgL-1 Rs / Ωcm2 Cf / 10-4 Fcm-2 Cf -n Rf / Ωcm2 Cdl / 10-4 Fcm-2 Cdl-n Rt / Ωcm2
0 13.2 39.2 0.953 6.28 41.9 0.628 801
10 15.3 36.9 0.834 162 40.5 0.720 1051
20 17.3 28.9 0.782 918 26.0 0.760 1506
50 12.5 5.14 0.624 2274 17.0 0.845 5395
100 12.6 3.24 0.590 2504 8.91 0.95 41556
Table 1  EIS fitting results of 20 # carbon steel in simulating water containing CO2-saturated and SRB with different concentrations of imidazoline
C / mgL-1 Ecorr / mV βa / mVdec-1 βc / mVdec-1 Icorr / μAcm-2 Corrosion rate / mma-1
0 -797 70.1 167 19.9 0.235
10 -796 73.7 156 9.22 0.109
20 -778 83.2 180 6.39 0.075
50 -755 158 74.4 1.15 0.014
100 -636 140 94.3 0.544 0.006
Table 2  Fitting results of polarization curves of 20# carbon steel in the simulating solutions
System Corrosion rate mma-1 Inhibition efficiency / %
A 0.136 ---
B 0.244 ---
C 0.0095 93.0
D 0.0135 94.4
Table 3  Corrosion rate of 20# steel and inhibition efficiency of imidazoline in four simulating solutions
Fig.3  Microscope graphs of 20# steel after corrosion for 10 d in the solutions A (a), B (b), C (c) and D (d)
Fig.4  UV-vis of imidazoline with different concentrations in the simulating solutions (The inset shows the standard curve of imidazoline)
Fig.5  Concentrations of imidazoline in the simulating solutions C and D after cultured for different time
Fig.6  Polarization curves of 20# steel after immersion for 0 d (a) and 10 d (b) in four different solutions
Time
d
System Ecorr
mV
βa
mVdec-1
βc
mVdec-1
Icorr
μAcm-2
0 A -719 72.9 436 10.40
B -715 61.0 385 18.80
C -684 86.8 152 1.38
D -657 94.4 134 1.68
10 A -749 96.6 512 8.75
B -743 79.0 461 32.40
C -715 137.6 268 2.13
D -695 91.3 556 3.53
Table 4  Fitting results of polarization curves of 20# steel in four solutions after immersion for different time
Fig.7  FTIR spectra of imidazoline (a) and the solutions extracted from system C (b) and system D (c)
Fig.8  Amount of SRB in the corrosive medium with and without imidazoline after 20# steel was immersed for 40 d
[1] Yang G, Wang Y G, Jin X C, et al. The study of CO2 corrosion in oil-gas well[J]. Total Corros. Control, 2009, 22(5): 24
(杨光, 王亚刚, 金小春等. 油气井二氧化碳腐蚀研究[J]. 全面腐蚀控制, 2009, 22(5): 24)
[2] Tan Y J, Bailey S, Kinsella B. An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS)[J]. Corros. Sci., 1996, 38(9): 1545
[3] Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media—a review[J]. Mater. Lett., 2008, 62(1): 113
[4] Gece G. The use of quantum chemical methods in corrosion inhibitor studies[J]. Corros. Sci., 2008, 50(11): 2981
[5] Wang Q, Fu C Y. Corrosion inhibition and adsorption effect of rosinyl imidazolium quaternary ammonium salt on steel in CO2-saturated NaCl solution[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 319
(王倩, 付朝阳. CO2饱和NaCl溶液中松香基咪唑啉季铵盐的缓蚀吸附行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 319)
[6] Zhang J, Du M, Yu H H, et al. Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel[J]. Acta Phys.-Chim. Sin., 2009, 25(3): 525
[7] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corros. Sci., 1994, 36(2): 315
[8] Okafor P C, Zheng Y. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions[J]. Corros. Sci., 2009, 51(4): 850
[9] Wang D, Li S, Ying Y, et al. Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives[J]. Corros. Sci., 1999, 41(10): 1911
[10] Liu H F, Wang M F, Xu L M. Progress in microbiologic control on corrosion caused by sulfate-reducing bacteria[J]. Corros. Sci. Prot. Technol., 2003, 15(3): 161
(刘宏芳, 汪梅芳, 许立铭. 硫酸盐还原菌腐蚀的微生物防治研究进展[J]. 腐蚀科学与防护技术, 2003, 15(3): 161)
[11] Liu H F, Liu T. Thermophilic sulfate-reducing bacteria growth and its impact on the corrosion of carbon steel[J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93
(刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 93)
[12] Fan M M, Zhao Y, Yan H Y, et al. Influence of sulfate-reducing bacteria on the carbon dioxide corrosion behavior of X60 steel[J]. Equip. Environ. Eng., 2010, 7(5): 13
(范梅梅, 赵勇, 闫化云等. 硫酸盐还原菌对 X60钢CO2腐蚀行为的影响[J]. 装备环境工程, 2010, 7(5): 13)
[13] Dong Z H, Liu T, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5): 487
[14] Ye Q, Li K J, Guo P P, et al. Evolution of SRB biofilm and its influence on corrosion of Q235 carbon steel in oilfield sewage[J]. Corros. Sci. Prot. Technol., 2013, 25(3): 195
(叶琴, 李克娟, 郭佩佩等. 油田污水中碳钢表面生物膜生长规律及腐蚀电化学行为[J]. 腐蚀科学与防护技术, 2013, 25(3): 195)
[15] Fan M M, Liu H F. Effect of carbon dioxide on microbiologically influenced corrosion characteristic of X60 steel[J]. Corros. Sci. Prot. Technol., 2012, 24(2): 107
(范梅梅, 刘宏芳. 二氧化碳对X60钢微生物腐蚀行为影响[J]. 腐蚀科学与防护技术, 2012, 24(2): 107)
[16] Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water[J]. Mater. Corros., 2013, 64(3): 242
[17] Qin S, Qi B, Huang Z, et al. Toxicity evaluation of inhibitor water environment applied in oil and gas field[J]. Oil-gasfield Surf. Eng., 2011, 30(8): 10
(秦双, 漆蓓, 黄茁等. 油气田常用缓蚀剂水环境综合毒性评价[J]. 油气田地面工程, 2011, 30(8): 10)
[18] Jiao Q Z, Fu C Y, Wang L R, et al. Concentration measurement of imidazoline inhibitor applied in oil and gas field[J]. Nat. Gas Ind., 2006, 26(6): 131
(焦其正, 付朝阳, 王丽荣等. 油气田用咪唑啉类缓蚀剂浓度的检测方法[J]. 天然气工业, 2006, 26(6): 131)
[1] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[5] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[6] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[10] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[11] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[13] Xiu JIANG, Xiaoliang SONG, Quan ZHANG, Yan LIU, Xize LIU, Dingrong QU. Effect of Ethylene Glycol on Corrosion Behavior of X65 Mild Steel in CO2-saturated 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(4): 375-381.
[14] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[15] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
No Suggested Reading articles found!