Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (5): 389-394    DOI:
Research Articles Current Issue | Archive | Adv Search |
PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING
SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao
Materials Science & Chemistry Engineering College, Harbin Engineering University, Harbin 150001
Download:  PDF(1229KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The protection dimension of scratched zinc phosphate/epoxy coating was studied by means of electrochemical impedance spectroscopy (EIS), electrochemical noise measurements (EN) and scanning electron microscopy (SEM). The experimental results of EN, EIS and SEM revealed that zinc phosphate could inhibit the corrosion of the scratched epoxy coatings; the protection effect was gradually weakened with increasing scratch dimension from 0.4 mm, 1.0 mm to 2.0 mm. The mechanism of the inhibition of zinc phosphate pigment was analyzed based upon the shot noise theory combined with Gumbel distribution function. It showed that the corrosion growth probability of the metal under the coating decreased with the addition of zinc phosphate.
Key words:  epoxy coating      zinc phosphate      protection dimension      electrochemical impedance spectroscopy      electrochemical noise     
Received:  24 March 2010     
ZTFLH: 

TG174.36

 
Corresponding Authors:  SHI Qiumei     E-mail:  shaoyawei@hrbeu.edu.cn

Cite this article: 

SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao. PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING. J Chin Soc Corr Pro, 2011, 31(5): 389-394.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I5/389

[1] Shao Y W, Cao J, Meng G Z, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel [J]. Corros. Sci., 2009, 51: 371-379

[2] Chromy L, Kaminska E. Non-toxic anticorrosive pigments [J]. Prog. Org. Coat., 1990, 18: 319

[3] Mahdavian A, Attar M M. Investigation on zinc phosphate effectiveness at different pigment volume concentrations via electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2005, 50: 4645

[4] Naderi R, Attar M M. Application of the electrochemical noise method to evaluate the effectiveness of modification of zinc phosphate anticorrosion pigment [J]. Corros. Sci., 2009, 51: 1671-1674

[5] Yuan A Q, Ma S M, Zhou Z G. Low-cost technological study on the environmental friendly antirust pigment called zinc phosphate [J]. Anti-corrosion, 2003, (7): 36-38

    (袁爱群, 马少妹, 周泽广.对环境友好的磷酸锌防腐颜料低成 本工艺的研究 [J]. 防腐蚀, 2003, (7):36-38)

[6] Yang Z Z. The development of the low/nontoxic zinc phosphate series anticorrosive pigments [J]. China Paint, 2001, (6): 38-40, 46

    (杨宗志. 磷酸锌系低/无毒防锈颜料的发展 [J]. 中国涂料. 2001, (6): 38-40, 46)

[7] Li W M, Song Y S, Deng S Z. The Corrosion of Coating Metal [M]. Changsha: National University of Defense Technology Press, 2003: 86

    (黎完模, 宋玉苏, 邓淑珍.涂装金属的腐蚀 [M]. 长沙: 国 防科技大学出版社, 2003: 86)

[8] Liu C, Bi Q, Leyland A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour [J]. Corros. Sci., 2003, 45: 1257-1273

[9] Liu C, Bi Q,Matthews A. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution [J]. Corros.Sci., 2001, 43: 1953-1961

[10] Zhang J Q. On EIS displays of zinc rich coatings [J]. J. Chin. Soc. Corros. Prot., 1996, 16(3):175-180

     (张鉴清. 富锌涂层的电化学阻抗谱特性 [J].中国腐蚀与防护学 报, 1996, 16(3): 175-180)

[11] Flis J, Dawson J L, Gill J. Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda [J]. Corros. Sci.,1991, 8: 877-892

[12] Uruchurtu J. Electrochemical investigations of the activation mechanism of aluminum [J].Corrosion, 1991, 47(6): 472

[13] Smulko J, Darowicki K. Nonlinearity of electrochemical noise caused by pitting corrosion [J]. J. Electroanal. Chem., 2003, 545: 59

[14] Monticelli C, Brunoro G, Frignani A. Evaluation of corrosion inhibitors by electrochemical noise analysis [J]. J. Electrochem. Soc., 1992, 139:706

[15] Cao C N. Studies on the spectral analyses in the electrochemistry of corrosion [J]. Corros. Sci. Prot. Technol.,1993, 5(1): l-9

     (曹楚南. 腐蚀电化学中的频谱分析研究 [J].腐蚀科学 与防护技术, 1993, 5(1): 1-9)

[16] Bertocci U, Frydman J, Gabrielli C. Analysis of electrochemical noise by power spectral density applied to corrosion studies [J]. J. Electrochem. Soc.,l998, l45(8): 2780-2785

[17] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1(7): 266

[18] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical paramenters of the estimation of corrosion mechanisms [J]. Corros. Sci., 2005,47: 3280-3299

[19] Eden D A, Hladky K, John D G, et al. Electrochemical noise-simultaneous monitoring of potential and current noise signals from corroding electrodes [C]. Corrosion,1986, 86: 274

[20] R A Cottis. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265-285

[21] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787-2793

[22] Al- Mazeed H A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta,2004, 49(17-18): 2787-2793

[23] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280-3299

[24] Gumbel E J. Statistical Theory of Extreme Values and Some Practical Applications [M]. U.S. Nat. Bur. Stand., 1954\par
[1] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[3] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[4] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[5] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[13] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[15] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
No Suggested Reading articles found!