Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (3): 208-213    DOI:
Research Articles Current Issue | Archive | Adv Search |
ACCELERATION RATIOS AND DYNAMIC CORRELATION EXPERIMENTS ON THE CORROSION LOSS OF Q235 STEEL IN SEASHORE SOIL
NIE Xianghui1,2, LI Xiaogang3, LI Yunlong1,2, LI Jike1,2, ZHANG Hongbo1,2
1. Tubular Goods Research Institute, China National Petroleum Corporation, Xi'an 710065
2. Beijing Longshine Oil Tubular Technology Co.Ltd., Beijing 100101
3. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Accelerative corrosion experiments were conducted on Q235 carbon steel in seashore salt soil in order to determine acceleration ratios and dynamic correlation coefficients. The experimentation utilized constant temperature and water content, various temperatures, and different water contents to calculate mass loss of steel samples in the lab; also, samples were put in the ground one meter deep, so as to perform addition analysis in the field. The results indicated that the acceleration ratio increased when the temperature increased; in addition, at the same temperature, the acceleration ratio was largest when the water content was 10%, then progressively lessened for the 10 %~30 % water content; for the 20 % and 30 % moisture levels, the values flattened and reached a minimum. For a constant temperature, the dynamic correlation was lower for low water content accelerative experiments, and higher for moderate and high water contents. At 50℃, the correlation coefficients were higher than those at 70℃. For these experiments, 70℃ and 20 % water content, achieved optimal results of the acceleration ratio and correlation coefficients.
Key words:  soil corrosion      accelerative experiment      temperature      water content      acceleration ratio      correlation     
Received:  23 March 2010     
ZTFLH: 

TG172.4

 
Corresponding Authors:  NIE Xianghui     E-mail:  niexh3597@sina.com

Cite this article: 

NIE Xianghui, LI Xiaogang, LI Yunlong, LI Jike, ZHANG Hongbo. ACCELERATION RATIOS AND DYNAMIC CORRELATION EXPERIMENTS ON THE CORROSION LOSS OF Q235 STEEL IN SEASHORE SOIL. J Chin Soc Corr Pro, 2011, 31(3): 208-213.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I3/208

[1] Shige H, Nakayama T, Ikeda K, et al. Correlation between accelerated laboratory tests and field tests for filiform corrosion of painted aluminum alloy sheets for automobile [J]. J. Soc. Mater. Sci., 2000, 49(11): 1193-1199

[2] Dong C F, Li X G, Wu J W, et al. Review in experimentation and date processing of soil corrosion [J]. Corros. Sci.Prot. Technol., 2003, 15(3): 154-160

    (董超芳, 李晓刚, 武俊伟等. 土壤腐蚀的实验研究与数据处理 [J]. 腐蚀科学与防护技术, 2003, 15(3): 154-160)

[3] Wang S M. Progress in atmospheric exposure & laboratory-accelerated corrosion tests and their correlation of zinc and zinc coatings [J]. Total Corros. Control, 2004, 18(4): 10-13

    (王绍明. 锌及锌覆盖层户外大气暴露与实验室加速腐蚀试验及其相关性的研究进展 [J]. 全面腐蚀控制, 2004, 18(4): 10-13)

[4] Lin C C, Wang C X. Correlation between accelerated corrosion tests and atmospheric corrosion tests on steel [J]. J. Appl. Electrochem., 2005, 35(9): 837-843

[5] Mou X L, Tian Y E, Wang X H. The relativity of the simulated accelerated test of carbon steel and low alloy steel and atmospheric corros. test [J]. Environ. Technol.,2001, 4: 11-18

    (牟献良, 田月娥, 汪学华. 碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性 [J]. 环境技术, 2001, 4: 11-18)

[6] Xie N M, Liu S F. The parallel and uniform properties of several relational models [J]. Syst. Eng., 2007, 25(8): 98-103

    (谢乃明, 刘思峰. 几类关联度模型的平行性和一致性 [J]. 系统工程, 2007, 25(8): 98-103)

[7] Tian M, Liu S F, Bu Z K. Summary of the grey correlation arithmetic model [J]. Stat. Decis., 2008, 1: 24-27

    (田民, 刘思峰, 卜志坤. 灰色关联度算法模型的研究综述 [J]. 统计与决策, 2008, 1: 24-27)
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[3] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[4] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[5] DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[6] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[8] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[12] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[14] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[15] FENG Yali,BAI Ziheng,CHEN Lihong,WEI Dan,ZHANG Dongjiu,YAO Qiong,WU Junsheng,DONG Chaofang,XIAO Kui. Correlation of Indoor Accelerated Corrosion with Outdoor Exposure for Corten-A Weathering Steel in Polluted Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
No Suggested Reading articles found!